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A B S T R A C T  

We gwe an extension of the Economic Premium Principle treated in Astin 
Bulletin, Volume 11 where only exponential utility functions were admitted. 
The case of arbitrary risk averse utility functions leads to similar quantitative 
results. The role of risk aversion in the t reatment  is essential. It also permits an 
easy proof for the existence of equilibrium. 
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1. T H E  P R O B L E M  

In BUHLMANN (1980) it was argued that in many real situations premiums are 
not only depending on the risk to be covered but also on the surrounding market  
conditions. The standard actuarial techniques are not geared to produce such a 
dependency and one has to construct a model for the whole market ,  if one wants 
to study the interrelationships between market  conditions and premiums. 

Such models exist m mathematical  economics. For the purpose of this paper  
we borrow the model of mathematical  economics for a pure exchange economy 
and we use the usual Walrasian equilibrium concept. 

The more practically oriented reader might consider the model as an ideal- 
~zatlon of e.g., a reinsurance market  where p remmms  of the contracts are 
determined by the market.  Of course, the Walrasian model is not the only way 
to describe a reinsurance market.  In oligopolistic situations one would rather 
have to rely on the theoretical f ramework provided by game theory. On the 
other hand the model used in this paper  extends far beyond reinsurance. 

The more theoretically minded reader will note that the model of an exchange 
economy used in the following has infinitely many commodities.  The classical 
result of existence of equilibrium [see e.g., DEBRZU (1959, 1974)] therefore 
does not hold. The existence proof given here is the theoretically most important  
aspect of the present paper. 

2. T H E  M O D E L  F O R  T H E  M A R K E T  

We have agents t, t = 1, 2 . . . . .  n (typically reinsurers, insurers, buyers of direct 
insurance etc.). 
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The commodities to be traded are quantities of money, conditional on the 
random outcome co, where 00 stands for an element of a probability space 
(rl, 9~, I-I). 

Let Y,(ca) stand for the function as traded by agent i assigning to each state 
ca the payment received by i from the participants in the market. In insurance 
terminology Y, describes an insurance policy or a reinsurance contract (Think 
of the sum of all insurance policies and reinsurance contracts bought and sold 
by i as if it were exactly one contract). 

On the other hand we have conditional payments caused to agent i from outside 
the market. These payments---conditional on ca--are described by X,(ca). In 
insurance terms X, represents the risk of the agent i before (re-)insurance. 

Using the terminology of BUHLMANN (1980) we call X, the original risk of 
agent t, Y, the exchange function (or exchange variable) of agent t. In addition 
we characterize each agent by his utility function u,(x) [as usual u l ( x ) > 0 ,  
u~'(x) <~ O] and his initial wealth W,. 

Whereas the original risk X, belongs to agent t from the start we imagine that 
Y, can be freely bought by him at a price which is given by 

(1) Price [Y,] = fn Y, (ca )dJ (ca ) dH(ca). 

The function ~ : l f l ~  appearing in (1) is called the price density The random 
vector ( Y~, Y2 . . . . .  Y.) representing the exchange variables bought by all agents 
will be denoted by ¥ in the sequel. 

3. EQUILIBRIUM 

DEFINITION. (~, ~r) is called an equilibrium if 
(a) for all t: E[u , (W, -X ,  + Y , - I  ~',(¢o'),~(ca')dFI(ca'))] = max for all possible 

choices of the exchange variable Y,. 
(b) ~,~1 Y,(ca) = 0 for all ca ~lq. 

TERMINOLOGY. If conditions (a) and (b) are satisfied we call ~ equilibrium 
price density, Y equilibrium risk exchange. 

Hint. It might be worthwhile to look up in BUHLMANN (1980) the definition 
in the special case of a finite probability space. The special case coincides with 
the standard equilibrium definitions in mathematical economics. 

In BUHLMANN (1980) it was shown that for exponential utility functions 
u,(x) = 1 - e  -~'x the equilibrium price density has the following form 

e~Z(o~ 
- where ! =  ~ 1 (2) ~(w) Z[e~Z] a ,=~a'~ 

where Z has the precise meaning 

(3) Z(~o)= ~ x,(ca). 
~=1 
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In this paper we show that equation (3) defines the "market  conditions" also in 
the case of arbitrary utility functions. We shall see that locally (but not globally) 
even (2) carries over to the case of arbitrary utility functions. 

REMARK. In the case of an arbitrary probability space existence of an equili- 
brium as defined is usually not discussed in the economic literature. Exceptions 
are BEWLEY (1972) and TOUSSA1NT (1981) who treat the problem of existence 
for economies with infinitely many commodities by imposing some topological 
structure on the space of random variables Y,. In this paper we shall prove that 
equilibrium exists making only risk theoretical assumptions. This is, however, 
postponed to section 8. Up to this section we therefore assume existence of an 
equilibrium. 

4. PRICE EQUILIBRIUM AND PARETO OPTIMUM 

It is shown in BUHLMANN (1980) that condition (a) is equivalent to condition 

(c) for all i: u~[W,-X,(to)+ ~',(to)-f Y,(co')~(co') dn(to ')]  

u:t -x,(col÷ I 
/ 

Y 

c, 
for almost all ¢o. 

COROLLARY. From (c) we see that ~ OF(to) dH(co)= 1. 

As Y, is only determined up to an additive constant there is no loss of generality 
in assuming 

I ~',(co')ck(~o') dlH(to') = 0 for all i. (d) 

For convenience we write X, - Y, =Z ,  (and quite naturally X, - '~', =Z , )  and use 
either the Y-variables or the Z-variables to describe the exchange. In the 
Z-language conditions (c) and (d) yield 

(4) for all t: ui[W,-,~,(co)]=C,d(co) (C, > 0) 

which--according to Borch's theorem [see BORCH (1960)I---shows that an equili- 
brium risk exchange (conditions (b), (c), (d)) is automatically a Pareto optimum 
(condition (b)) plus (4)). 

Conversely if we start with a Pareto optimum (condition (b) plus (4) because 
of Borch's theorem) all we need to render (,~,, Y) an equilibrium is a change of 
the initial wealth W, by the "free amounts '  A, =El,bY,] where Y, =X,-Z , .  
(Observe that ~,~ ~ A, = 0). 
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Before we continue our analysis it is important to note that the random 
variables ,Z, (t = 1, 2 , . . . ,  n) and 4~ can be and very often must be chosen to 
depend on to only through Z ( t o ) =  ~,"=1X,(to). This result by BORCH (1962) can 
also be obtained from the following argument: Assume a Pareto optimal risk 
exchange ,,~ with 

(I) E[u,(W, -2,)]  
and 

(II) ~ Z.,(to)= ~ X,(to)=Z(to) forallto. 
I ~ l  I = l  

Define ~, = E[2,1Z] for each ,. 

is again a balancing risk exchange (i.e., satisfies (II)). From Jensen's m- 

equality for the conditional expectation gwen Z we conclude that Z is at least 
as good as Z for all i. Namely 

E [ u , ( W , - 2 , ) I Z ] ~ < E [ u , ( W ,  - Z , ) I Z ]  for all i 

and hence 

( i )  E [ u , ( W ,  - 2 , ) ] < ~ E [ u , ( W ,  -Z.,)] for all i. 

The inequality is strict unless either Z, = 2~, and/or  u, (x) is linear on the  probabilis- 
tic support of Z,. Excluding linearity of u, for all but one agent, Z, must  depend 
on to through Z for all i. In the case of linearity of u, for several agents there 
is indifference of splitting the risk among them. Also in this case we may  therefore 
assume that Z, depends on to through Z for all t. 

Finally if Z, is a function of Z for all i so must be 6 as seen from (4). 
Because of this we use also the notation 2.,(~'), 4~(~'), where ~" is the generic 

element of the probability space obtained by the mapping Z :  12 ~ R. 

We rewrite (4) as 

(5) for all i: 

5. RISK AVERSION 

u:(W,-2,(~))=C,q~({) with ~ Z,(~)=~. 
I = l  

Taking the logarithmic derivative on both sides we obtain 

2: (5) -u;(W, L2,(O) = 

- u, ( x ) /u ,  (x) and obtain We introduce the mdividual  risk averston p, (x ) - " ' 

(6) 
p,( W, - 2,(O )21(O 
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and because Y~,~1 2 [  (() = 1 also 

(7) 1 ~ 1 = ~(~) E,p,(w, -2 , (~))  

The sum on the right-hand side adds up the individual risk tolerance units and 
hence can be understood as the total risk tolerance unit. We express this by the 
abbreviated notation 

1 1 
(8) E p, (w,  - 2,, (~')) - p ( ( )  

This notation suggests to call p(()  the total risk aversion. Observe, however, that 
this concept does not only depend on ~r but also on the functions Z, (~r) representing 
a particular fixed Pareto optimal splitting of the total risk. 

With this understanding we also obtain from (6) and (7) 

p(s r) 1/[p,(W,-Z,(~r))] Quotient of risk 
(9) 2~ (~') = 

o , ( W  ' _ ~,(~r)) - 1/0 ( s t )  tolerance units 

This formula--as  far as the author bel ieves--not  appearing elsewhere in the 
literature, is quite remarkable in two respects. 

(a) Borch's condition (our (5) above) characterizes the Pareto optima by a 
system of differential equations with n -  1 free parameters. In (9) these parameters 
have disappeared and we have a unique system of differential equations. 

This means that one can now characterize the set of all Pareto optimal 
exchanges by the initial values Z, (0). 

(b) The notion of risk aversion has been derived for the study of one single 
agent and the relationship between his certainty-equivalent and the risk variance 
[PRAtt  (1964)]. The appearance in the characterization of Pareto optimal risk 
exchanges is a surprise and gives the risk aversion a new additional meaning. 

6.  A NEW I N T E R P R E T A T I O N  OF P A R E T O  O P T I M A L  

RISK E X C H A N G E S  

As just indicated, formula (9) allows us to characterize the set of all Pareto 
optima from their initial values. This shall now be done explicitly. Before we 
start we might, however, ask how these initial values ,Z,(0) should be interpreted. 

Using the definitions as introduced in section 4 

2 , ( 0 )  = ( x ,  - ~',)(0) 

we see that Z,(0) stands for the total balance of payments to be made by t in 
the case when the total claims to the market Z = ~,"=~ X, are zero. This justifies 
the following 

TERMINOLOGY. T~ = -2q (0) is called initial receipt by agent i (before any positive 
or negative claims come in). 
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Any Pareto optimal risk exchange ,Z = (.~1, Z2 . . . . .  iT, n) can then be described 
as follows: 

(A) Define arbitrary initial receipts T, (~,~l T,=0).  (This is equivalent to 
choosing the constants C, in equation (4)). 

(B) Solve the system of differential equations (9) (i = 1, 2 , . . . ,  n) with initial 
conditions ,Z,(0) = -T ,  (i = 1, 2 . . . . .  n). 

This mathematical characterization allows the following interpretation: After 
having distributed the initial receipts, the increases (decreases) d (  of total risk 
~" are split in the proportion of the risk tolerance units 

(10) dZ,(~) = 1 / [p , (W, -~ ' (~ ' ) ) ]  d~'. '~ 
l / p ( ( )  

It is clear how (10) would immediately allow for a numerical integration of the 
system of differential equations (9). In order to avoid any technical difficulties 
with the system of differential equations we make the hypothesis (from here on) 

(H) The risk aversions p,(x) are positive continuous functions on II~, satisfying 
a Lipschitz condition [O, (x) - p, (x')[ ~- Klx - x'l 

Under (H) we have existence and uniqueness of the solution to (9) for arbitrary 
initial receipts T = (Ti, T2 . . . . .  T,). 

R E M A R K S  

(1) The new interpretation of Pareto Optimum can also be used in the case 
of risk exchanges ¥ restricted by some bounds. In this case, however, not all 
the agents would always participate in the splitting of all increases (decreases) d(. 

(2) From our interpretation (10) it is clear that hypothesis (H) could be 
weakened to allow at most one function p,(x) to be ~.ero for any specific argument 
x. We renounce this refinement. 

7.  THE G E N E R A L  E C O N O M I C  P R E M I U M  PRINCIPLE D E P E N D I N G  ON THE 

INITIAL T R A N S F E R  PAYMENTS 

We start with an equilibrium (,~,, ,~) (remember .~., =X,  - ~) .  As Z, is Pareto 
optimal it can be constructed according to the description in section 6. The 
choice of the initial receipts T, must be left open at the moment. 

However, the equilibrium price density ~ like the "after exchange" functions 
.Z, (i = 1, 2 . . . . .  n) can be determined from the basic equations in section 5 for 
any particular choice of T = (T1, T2, • • •, T,). 

Combining (6) and (9) we obtain 

(11) PT(() = '~ ' ( ( )  4'T(ff) 
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with 

1 
(12) pr(~) 

1 

,~, p,(w, - 2 1 ( 0 )  

Observe that from here on Z~(~') (for all i) stand for those unique 
. . . .  ~ T  optimal risk exchange functions with Z ,  (0) = -T , .  

From (11) and the norming condition ~ ~,(oJ)dII(oJ)= 1 we obtain 

Pareto 

(13) ~T(Z(w)) - -  exp Io z("~) PT(~') d~" 
E[exp I~ (~) PT(~) d~]" 

We easily recogmze (13) as the global generalization of (2). The local behavtour, 
described by (11), is even the same as for exponential utilities. The basic difference 
is, of course, that in general the total risk aversion is not constant but depends 
on the total risk ~" and the way this total risk is split up among the agen t s .  

For the practically minded reader we might add that the price density &r can 
be understood as a distortion of the actuarially correct probabilities. Formula 
(13) explains how this distortion comes about. 

8. EXISTENCE OF EQUILIBRIUM 

We have now--in a very natural way- -come back to the question of existence 
of equilibrium. With the tools at our disposal we can now pose it as follows: 

Are there initial receipts T = (Tl ,  T2 . . . . .  'T',) such that 

(14) E[qb¢~ ' ]=E[qb~(X , -2T)]=O for all i = 1 , 2  . . . . .  n? 

Observe that for arbitrary initial receipts the resulting (&T, y T )  satisfies (4) and 
(b). In order to be an equilibrium it must also satisfy (d) (which is the same as 
(14)). We could also say, in the spirit of section 3, that in equilibrium no change 
of initial wealth distribution by free amounts is needed. 

THEOREM. Under (H) and for bounded X,, t = 1, 2 . . . . .  n T exists. 

PROOF.  

(i) Consider the mapping I~---~ R n 
S = ($1, $2 . . . . .  Sn) by the rule 

which sends T = (Ti ,  T2 . . . . .  T,) into 

E [ $ r ( 2 T  + T, - X , ) ]  = S,. 
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(ii) Observe that ( 2 r  + T,)(0) = 0 by definition. In view of (10) and hypothesis 
H we must have for all t 

(ZT+T,)~<( for ( ~ 0  

(ZT+T,)>~" for ~<~0 

which can be wrttten as 

hence 

T,l-<] t x, 
t = l  

(IX,] ~<M for all i, by assumption) 

Is, I = EE~T • ( 2 ~  + T, -X,)3 ~ (n + 1)M for arbitrary T. 

(iii) Consider now the compact  rectangle [T,I~ (n + 1)M for all i. Call it R. 
Consider the hyperplane ~,"=1 T, = 0. Call it E. 
The intersection R n E ts non empty,  compact  and convex. 
(iv) The mapping T ~ $  defined in (i) maps R c~E into R c~E. 

Check 

s , = z  T _E Z ~  •-- X, = 0  
t ~ l  t 1 = t = l  

• J 

From (H) and boundedness of all X, it follows by a standard theorem on 
differential equations that the solutions Z ,  r (i = 1, 2 . . . . .  n ) depend continuously 
on the initial conditions T. Therefore  the mapping T ~ S  is also continuous. 

Applying BROUWER'S Fixed-Point Theorem we have existence of T with 

E [ ~ T "  ( 2 f  + ~ - X , ) ]  = T, for all i 

and consequently 

E [ , ~ T ( 2 f - X , ) ]  = 0 for al l /  q.e.d. 

REMARK. Boundedness of X, is a rather strong technical assumption which 
one might want to weaken. The general idea would be to approximate arbitrary 
random variables X, by truncatton and to perform a limit argument.  For the 
correctness of this limit argument,  however,  one needs again some techntcal 
assumptions. 
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