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UTILITY FUNCTIONS:
FROM RISK THEORY TO FINANCE

Hans U. Gerber* and Gérard Pafumi†

ABSTRACT

This article is a self-contained survey of utility functions and some of their applications. Through-
out the paper the theory is illustrated by three examples: exponential utility functions, power
utility functions of the first kind (such as quadratic utility functions), and power utility functions
of the second kind (such as the logarithmic utility function). The postulate of equivalent expected
utility can be used to replace a random gain by a fixed amount and to determine a fair premium
for claims to be insured, even if the insurer’s wealth without the new contract is a random variable
itself. Then n companies (or economic agents) with random wealth are considered. They are
interested in exchanging wealth to improve their expected utility. The family of Pareto optimal
risk exchanges is characterized by the theorem of Borch. Two specific solutions are proposed.
The first, believed to be new, is based on the synergy potential; this is the largest amount that
can be withdrawn from the system without hurting any company in terms of expected utility.
The second is the economic equilibrium originally proposed by Borch. As by-products, the option-
pricing formula of Black-Scholes can be derived and the Esscher method of option pricing can
be explained.

1. INTRODUCTION
The notion of utility goes back to Daniel Bernoulli

(1738). Because the value of money does not solve the

paradox of St. Petersburg, he proposed the moral

value of money as a standard of judgment. According

to Borch (1974, p. 26),

Several mathematicians, for example Laplace, dis-

cussed the Bernoulli principle in the following cen-

tury, and its relevance to insurance systems seems

to have been generally recognized. In 1832 Barrois

presented a fairly complete theory of fire insurance,

based on Laplace’s work on the Bernoulli principle.

For reasons that are difficult to explain, the principle

was almost completely forgotten, by actuaries and

economists alike, during the next hundred years.
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This is confirmed by Seal (1969, Ch. 6) and the ref-

erences cited therein.

Utility theory came to life again in the middle of

this century. This was above all the merit of von Neu-

mann and Morgenstern (1947), who argued that the

existence of a utility function could be derived from a

set of axioms governing a preference ordering. Borch

showed how utility theory could be used to formulate

and solve some problems that are relevant to insur-

ance. Due to him, risk theory has grown beyond ruin

theory. Most of the original papers of Borch have been

reprinted and published in book form (1974, 1990).

Economic ideas have greatly stimulated the devel-

opment of utility theory. But this also means that sub-

stantial parts of the literature have been written in a

style that does not appeal to actuaries.

The purpose of this paper is to give a concise but

self-contained survey of utility functions and their ap-

plications that might be of interest to actuaries. In

Sections 2 and 3 the notion of a utility function with

its associated risk aversion function is introduced.

Throughout the paper, the theory is illustrated by

means of examples, in which exponential utility func-

tions and power utility functions of the first and
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second kind are considered, which include quadratic

and logarithmic utility functions.

In Section 4, we order random gains by means of

their expected utilities. In particular, a random gain

can be replaced by a fixed amount, the certainty equiv-

alent. This notion can be used by the consumer who

wants to determine the maximal premium he or she

is willing to pay to obtain full coverage.

The insurer’s situation is considered in Section 5. A

premium that is fair in terms of expected utility typ-

ically contains a loading that depends on the insurer’s

risk aversion and on the joint distribution of the

claims, S, and the random wealth, W, without the new

contract; certain rules of thumb in terms of Var[S]

and Cov(S, W ) are obtained. Section 6 presents a clas-

sical result that can be found as Theorem 1.5.1 in

Bowers et al. (1997).

In Section 8, we consider n companies with random

wealth. Can they gain simultaneously by trading risks?

The class of Pareto optimal exchanges is discussed and

characterized by the theorem of Borch. Two more spe-

cific solutions are proposed. The first idea is to with-

draw the synergy potential, which is the largest

amount that can be withdrawn from the system of the

n companies without hurting any of them. Then this

amount is reallocated to the companies in an unam-

biguous fashion. The second idea, as presented by

Bühlmann (1980, 1984), is to consider a competitive

equilibrium, in which random payments can be bought

in a market. Here the equilibrium price density plays

a crucial role. In Section 11 it is shown how options

can be priced by means of the equilibrium price den-

sity. This approach differs from chapter 4 of Panjer et

al. (1998), which considers the utility of consumption

and assumes the existence of a representative agent.

2. UTILITY FUNCTIONS
Often it is not appropriate to measure the usefulness

of money on the monetary scale. To explain certain

phenomena, the usefulness of money must be mea-

sured on a new scale. Thus, the usefulness of $x is

u(x), the utility (or ‘‘moral value’’) of $x. Typically, x

is the wealth or a gain of a decision-maker.

We suppose that a utility function u(x) has the fol-

lowing two basic properties:

(1) u(x) is an increasing function of x

(2) u(x) is a concave function of x.

Usually we assume that the function u(x) is twice

differentiable; then (1) and (2) state that u9(x) . 0

and u0(x) , 0.

The first property amounts to the evident require-

ment that more is better. Several reasons are given

for the second property. One way to justify it is to

require that the marginal utility u9(x) be a decreasing

function of wealth x, or equivalently, that the gain of

utility resulting from a monetary gain of $g, u(x 1 g)

2 u(x), be a decreasing function of wealth x.

Example 1

Exponential utility function (parameter a . 0)

1
2axu(x) 5 (1 2 e ), 2` , x , `. (1)

a

We note that for x → `, the utility is bounded and

tends to the finite value 1/a.

Example 2

Power utility function of the first kind (parameters

s . 0, c . 0)

c11 c11s 2 (s 2 x)
u(x) 5 , x , s. (2)

c(c 1 1)s

Obviously this expression cannot serve as a model be-

yond x 5 s. The only way to extend the definition be-

yond this point so that u(x) is a nondecreasing and

concave function is to set u(x) 5 s/(c 1 1) for x $

s. In this sense s can be interpreted as a level of sat-

uration: the maximal utility is already attained for the

finite wealth s. The special case c 5 1 is of particular

interest. Then

2x
u(x) 5 x 2 , x , s (3)

2s

is a quadratic utility function.

Example 3

Power utility function of the second kind (parameter

c . 0). For c Þ 1 we set

12cx 2 1
u(x) 5 , x . 0. (4)

1 2 c

For c 5 1 we define

u(x) 5 ln x, x . 0. (5)

Note that (5) is the limit of (4) as c → 1.
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Remark 1

A utility function u(x) can be replaced by an equiva-

lent utility function of the form

ũ(x) 5 Au(x) 1 B (6)

(with A . 0 and B arbitrary). Hence it is possible to

standardize a utility function, for example, by requir-

ing that

u(j) 5 0, u9(j) 5 1 (7)

for a particular point j. In Examples 1 and 2 this has

been done for j 5 0; in Example 3 it has been done

for j 5 1.

Remark 2

If we take the limit a → 0 in Example 1, or s → ` in

Example 2, we obtain u(x) 5 x, a linear utility func-

tion, which is not a utility function in the proper

sense. Similarly, the limit c → 0 in Example 3 is

u(x) 5 x 2 1.

Remark 3

In the following we tacitly assume that x , s if u(x)

is a power utility function of the first kind, and that

x . 0 if u(x) is a power utility function of the second

kind. The analogous assumptions are made when we

consider the utility of a random variable.

3. RISK AVERSION FUNCTIONS
To a given utility function u(x) we associate a function

2u0(x) d
r(x) 5 5 2 ln u9(x), (8)

u9(x) dx

called the risk aversion function. We note that prop-

erties (1) and (2) imply that r(x) . 0. Let us revisit

the three examples of Section 2.

For the exponential utility function (parameter a .
0), we find that

r(x) 5 a, 2` , x , `. (9)

Thus the exponential utility function yields a constant

risk aversion.

For the power utility function of the first kind (par-

ameters s . 0, c . 0), we find that

c
r(x) 5 , x , s. (10)

s 2 x

Here the risk aversion increases with wealth and be-

comes infinite for x → s; this has the following inter-

pretation: if the wealth is close to the level of satu-

ration s, very little utility can be gained by a monetary

gain; hence there is no point in taking any risk.

For the power utility function of the second kind (pa-

rameter c . 0), we obtain

c
r(x) 5 , x . 0. (11)

x

Here the risk aversion is a decreasing function of

wealth, which may be typical for some investors.

If u(x) is replaced by an equivalent utility function

as in (6), the associated risk aversion function is the

same. In the opposite direction, if we are given the

risk aversion function r(x) and want to find an under-

lying utility function, we look for a function u(x) that

satisfies the equation

u0(x) 1 r(x)u9(x) 5 0. (12)

Such a differential equation has a two-parameter fam-

ily of solutions. To get a unique answer, we may stan-

dardize according to (7) for some j. Then the solution

is

x z

u(x) 5 E exp 2E r( y)dy dz. (13)F G
j j

Now suppose that r1(x) and r2(x) are two risk aver-

sion functions with

r (x) # r (x) for all x. (14)1 2

Let u1(x) and u2(x) be two underlying utility func-

tions. Because of their ambiguity, they cannot be com-

pared without making any further assumptions. If we

assume however, that u1(x) and u2(x) are standard-

ized at the same point j, that is,

u (j) 5 0, u9(j) 5 1, i 5 1, 2, (15)i i

then it follows that

u (x) $ u (x) for all x. (16)1 2

For the proof we observe that

x z

u (x) 5 E exp 2E r ( y)dy dz, if x . j,F Gi i
j j

j j

u (x) 5 2E exp E r ( y)dy dz, if x , j,F Gi i
x z

and use the assumption (14).
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4. PREFERENCE ORDERING OF RANDOM
GAINS

Consider a decision-maker with initial wealth w who

has the choice between a certain number of random

gains. By using a utility function, two random gains

can be directly compared: he or she prefers G1 to G2,

if

E[u(w 1 G )] . E[u(w 1 G )], (17)1 2

that is, if the expected utility from G1 exceeds the

expected utility from G2. If the expected utilities are

equal, he will be indifferent between G1 and G2. Thus

a complete preference ordering is defined on the set

of random gains.

If we multiply (17) by a positive constant A and add

a constant B on both sides, an equivalent inequality

in terms of the function is obtained. Hence u(x)ũ(x)

and define the same ordering and are consideredũ(x)

to be equivalent.

Example 4

Suppose that the decision-maker uses the exponential

utility function with parameter a and has the choice

between two normal random variables, G1 and G2, with

E[Gi] 5 mi, Var[Gi] 5 i 5 1, 2. Since2s ,i

1
2aG 2 2iE[e ] 5 exp 2am 1 a s ,S Di i2

it follows that

E[u(w 1 G )]i

1 1
2 25 1 2 exp 2aw 2 am 1 a s .F S DGi ia 2

Hence G1 is preferred to G2, if (17) is satisfied, that

is, if

1 1
2 2m 2 as . m 2 as . (19)1 1 2 22 2

Jensen’s inequality tells us that for any random vari-

able G,

u(w 1 E[G]) . E[u(w 1 G)]. (20)

Hence, if a decision-maker can choose between a ran-

dom gain G and a fixed amount equal to its expecta-

tion, he will prefer the latter. This brings us to the

following definition: The certainty equivalent, p, as-

sociated to G is defined by the condition that the de-

cision-maker is indifferent between receiving G or the

fixed amount p. Mathematically, this is the condition

that

u(w 1 p) 5 E[u(w 1 G)]. (21)

From (20) we see that p , E[G]. Let us consider

two examples in which explicit expressions for p can

be obtained:

For an exponential utility function, the certainty

equivalent is

21
2aGp 5 ln E[e ]. (22)

a

Note that it does not depend on w. By expanding this

expression in powers of a, we obtain the simple ap-

proximation

a
p < E[G] 2 Var[G], (23)

2

valid for sufficiently small values of a.

For a quadratic utility function, condition (21) leads

to a quadratic equation for p. Its solution can be writ-

ten as follows:

p 5 E[G] 2 (s 2 w 2 E[G])l

with

Var[G]
l 5 1 1 2 1. (24)

2! (s 2 w 2 E[G])

For large values of s, we can expand the square root

and find the approximation

1 Var[G]
p < E[G] 2 . (25)

2 (s 2 w 2 E[G])

In view of (10) we can write this formula as

1
p < E[G] 2 r(w 1 E[G]) Var[G], (26)

2

which is similar to formula (23).

For a general utility function, it follows from (21)

that

21p 5 u (E[u(w 1 G)]) 2 w. (27)

If G is a gain with a ‘‘small’’ risk, the following more

explicit approximation is available:

1
p < E[G] 2 r(w 1 E[G]) Var[G]. (28)

2

To give a precise meaning to this statement, we set

G 5 m 1 zV, z . 0 (29)z

where m is a constant and V a random variable with

E[V] 5 0 and Var[V] 5 E[V2] 5 s2. Hence E[Gz] 5
m and Var[Gz] 5 z2s2. Let p(z) be the certainty equiv-

alent of Gz, defined by the equation
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u(w 1 p(z)) 5 E[u(w 1 G )]. (30)z

The idea is to expand the function p(z) in powers of

z :

2p(z) 5 a 1 bz 1 cz 1 . . . (31)

If we set z 5 0 in (30), we obtain

u(w 1 a) 5 u(w 1 m), or a 5 m. (32)

If we differentiate (30), we get the equation

p9(z)u9(w 1 p(z)) 5 E[Vu9(w 1 G )]. (33)z

Setting z 5 0 yields

bu9(w 1 m) 5 E[V] u9(w 1 m) 5 0,

or b 5 0. (34)

Finally we differentiate (33) to obtain

2p0(z)u9(w 1 p(z)) 1 p9(z) u0(w 1 p(z))

25 E[V u0(w 1 G )]. (35)z

Setting z 5 0 we obtain

22c u9(w 1 m) 5 E[V ] u0(w 1 m), (36)

or

1 u0(w 1 m) 1
2 2c 5 s 5 2 r(w 1 m)s . (37)

2 u9(w 1 m) 2

Substitution in (31) yields the approximation

1
2 2p(z) < m 2 r(w 1 m) z s

2

1
5 E[G ] 2 r(w 1 E[G ])Var[G ], (38)z z z2

which explains (28).

Let us now consider two utility functions u1(x) and

u2(x) so that

r (x) # r (x) for all x, (39)1 2

and let p1 and p2 denote their respective certainty

equivalents. Then we expect that

p $ p . (40)1 2

To verify this result, we assume that the underlying

utility functions are standardized at the same point

j 5 w 1 p1. Then

u (x) $ u (x) for all x. (41)1 2

From this and the definitions of p1 and p2, it follows

that

u (w 1 p ) 5 02 1

5 u (w 1p )1 1

5 E[u (w 1 G)]1

$ E[u (w 1 G)]2

5 u (w 1 p ). (42)2 2

Since u2 is an increasing function, it follows indeed

that p1 $ p2.

5. PREMIUM CALCULATION
We consider a company with initial wealth w. The

company is to insure a risk and has to pay the total

claims S (a random variable) at the end of the period.

What should be the appropriate premium, P, for this

contract? An answer is obtained by assuming a utility

function, u(x), and by postulating fairness in terms of

utility. This means that the expected utility of wealth

with the contract should be equal to the utility with-

out the contract:

E[u(w 1 P 2 S)] 5 u(w). (43)

This is called the principle of equivalent utility. Equa-

tion (43) determines P uniquely, but has no explicit

solution in general. Notable exceptions are the cases

in which u(x) is exponential, where

1
aSP 5 ln E[e ], (44)

a

or quadratic, where we find that

Var[S]
P 5 E[S] 1 (s 2 w) 1 2 1 2 . (45)H J2! (s 2 w)

If S is a ‘‘small’’ risk, (43) can be solved approximately

as follows:

1
P < E[S] 1 r(w)Var[S] (46)

2

(to see this, set S 5 m 1 zV, with E[V] 5 0, and

expand P in powers of z).

In many cases a more realistic assumption is that

the wealth without the new contract is a random vari-

able itself, say W. Then P is obtained from the equa-

tion

E[u(W 1 P 2 S)] 5 E[u(W )]. (47)

Note that now P depends on the joint distribution of

S and W.

Let us revisit the examples in which P can be cal-

culated explicitly.
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Example 5

If u(x) 5 (1 2 e2ax)/a, we find that

a(S2W )1 E[e ]
P 5 ln . (48)

2aWa E[e ]

If a is small, we can expand this expression in powers

of a and obtain the approximation

a a
P < E[S] 1 Var[S 2 W] 2 Var[W] (49)

2 2

a
5 E[S] 1 Var[S] 2 a Cov(S,W ). (50)

2

We note that (48) reduces to (44) in the case in which

S and W are independent random variables. Also, we

remark that (49) is exact in the case where S and W

are bivariate normal.

Example 6

If u(x) 5 x 2 x2/2s, we find that

P 5 E[S] 1 (s 2 E[W])l

with

Var[S] 2 2 Cov(S,W )
l 5 1 2 1 2 . (51)

2! (s 2 E[W])

Note that this expression reduces to (45) with w re-

placed by E[W], in the case in which S and W are

uncorrelated random variables. For large values of s,

(51) leads to the approximation

1 Var[S] 2 2 Cov(S,W )
P < E[S] 1

2 s 2 E[W]

1
5 E[S] 1 r(E[W]){Var[S] 2 2 Cov(S,W )}.

2

(52)

6. OPTIMALITY OF A STOP-LOSS
CONTRACT

We consider a company that has to pay the total

amount S (a random variable) to its policyholders at

the end of the year. We compare two reinsurance

agreements:

(1) A stop-loss contract with deductible d. Here the

reinsurer will pay

S 2 d if S . d
(S 2 d) 5 (53)H1 0 if S # d

at the end of the year.

(2) A general reinsurance contract, given by a func-

tion h(x), where the reinsurer pays h(S) at the

end of the year. The only restriction on the func-

tion h(x) is that

0 # h(x) # x. (54)

We assume that the two contracts are comparable,

in the sense that the expected payments of the rein-

surer are the same, that is, that

E[(S 2 d) ] 5 E[h(S)]. (55)1

Furthermore, we make the convenient (but perhaps

not realistic) assumption that the two reinsurance

premiums are the same. Then, in terms of utility, the

stop-loss contract is preferable:

E[u(w 2 S 1 h(S))] # E[u(w 2 S 1 (S 2 d) )].1

(56)

In this context, w represents the wealth after receipt

of the premiums and payment of the reinsurance pre-

miums.

The proof of (56) starts with the observation that a

concave curve is below its tangents, that is, that

u( y) # u(x) 1 u9(x)( y 2 x) for all x and y.

(57)

Using this for y 5 w 2 S 1 h(S), x 5 w 2 S 1 (S 2
d)1, we get

u(w2S1h(S)) # u(w2S1(S2d) )1

1 u9(w2S1(S2d) )(h(S)2(S2d) )1 1

# u(w2S1(S2d) ) 1 u9(w2d)(h(S)2(S2d) ).1 1

(58)

To verify the second inequality, distinguish the cases

S . d, in which equality holds, and S # d, where

u9(w 2 S 1 (S 2 d) )(h(S) 2 (S 2 d) )1 1

5 u9(w 2 S)h(S)

# u9(w 2 d)h(S)

5 u9(w 2 d)(h(S) 2 (S 2 d) ).1

Now we take expectations in (58) and use (55) to ob-

tain (56).

7. OPTIMAL DEGREE OF REINSURANCE
Again we consider a company that has to pay the total

amount S (a random variable) at the end of the year.
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A proportional reinsurance coverage can be pur-

chased. If P is the reinsurance premium for full cov-

erage (of course P . E[S]), we assume that for a pre-

mium of wP the fraction wS is covered and will be

reimbursed at the end of the year (0 # w # 1.) Then

the optimal value of w, is the value that maximizesw̃,

E[u(w 2 wP 2 (1 2 w)S)], (59)

where u(x) is an appropriate utility function and

where the initial surplus, w, includes the premiums

received. In the particular case in which u(x) is the

exponential utility function with parameter a, and S

has a normal distribution with mean m and variance

s2, the calculations can be done explicitly. The ex-

pected utility is now

1
(1 2 E{exp[2aw 1 awP 1 a(1 2 w)S]})

a

1 1
2 2 25 exp 2aw1awP1a(12w)m 1 a (12w) s .F G

a 2

It is maximal for

P 2 m
1 2 w̃ 5 . (60)

2as

This result has an appealing interpretation. The opti-

mal fraction that is retained is proportional to the

loading contained in the reinsurance premium for full

coverage, and inversely proportional to the company’s

risk aversion and the variance of the total claims.

In finance, a formula similar to (60) is known as the

Merton ratio, see Panjer et al. (1998, Ch. 4). The dif-

ference is that for Merton’s formula, the utility func-

tion is a power utility function and S is lognormal,

while here the utility function is exponential and S is

normal.

8. PARETO OPTIMAL RISK EXCHANGES
We consider n companies (or economic agents). We

assume that company i has a wealth Wi at the end of

the year and bases its decisions on a utility function

ui(x). Here W1, . . . , Wn are random variables with a

known joint distribution. Let W 5 W1 1 . . . 1 Wn

denote the total wealth of the companies. A risk

exchange provides a redistribution of total wealth.

Thus after a risk exchange, the wealth of company i

will be Xi; here X1, . . . , Xn can be any random variables

provided that

X 1 . . . 1 X 5 W, (61)1 n

that is, the total wealth remains the same. The value

for company i of such an exchange is measured by

E[u (X )].i i

A risk exchange . . . , is said to be Pareto˜ ˜(X , X )1 n

optimal, if it is not possible to improve the situation

of one company without worsening the situation of at

least one other company. In other words, there is no

other exchange (X1, . . . , Xn) with

˜E[u (X )] $ E[u (X )], for i 5 1, . . . , ni i i i

whereby at least one of these inequalities is strict. If

the companies are willing to cooperate, they should

choose a risk exchange that is Pareto optimal.

The Pareto optimal risk exchanges constitute a fam-

ily with n 2 1 parameters. They can be obtained by

the following method: Choose k1 . 0, . . . , kn . 0 and

then maximize the expression

n

k E[u (X )], (62)O i i i
i51

where the maximum is taken over all risk exchanges

(X1, . . . , Xn). This problem has a relatively explicit

solution:

Theorem 1 (Borch)

A risk exchange . . . , maximizes (62) if and˜ ˜(X , X )1 n

only if the random variables are the same for˜k u9(X )i i i

i 5 1, . . . , n.

Proof

(a) Suppose that . . . , maximizes (62). Let˜ ˜(X , X )1 n

j Þ h and let V be an arbitrary random variable. We

define

˜X 5 X , for i Þ j, h,i i

˜X 5 X 1 tV,j j

˜X 5 X 2 tV,h h

where t is a parameter. Let

n

f(t) 5 k E[u (X )]. (63)O i i i
i51

According to our assumption, the function f(t) has a

maximum at t 5 0. Hence f 9(t) 5 0, or

˜ ˜k E[Vu9(X )] 2 k E[Vu9(X )] 5 0. (64)j j j h h h

It is useful to rewrite this equation as

˜ ˜E[V{k u9(X ) 2 k u9(X )}] 5 0. (65)j j j h h h
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Since this holds for an arbitrary V, we conclude that

˜ ˜k u9(X ) 2 k u9(X ) 5 0. (66)j j j h h h

This shows indeed that is independent of i.˜k u9(X )i i i

(b) Conversely, let . . . , be a risk exchange˜ ˜(X , X )1 n

so that

˜k u9(X ) 5 L (67)i i i

is the same random variable for all i. Let (X1, . . . , Xn)

be any other risk exchange. From (57) it follows that

˜ ˜ ˜u (X ) # u (X ) 1 u9(X )(X 2 X ). (68)i i i i i i i i

If we multiply this inequality by ki, sum over i and use

(67), we get

n n n

˜ ˜k u (X ) # k u (X ) 1 L (X 2 X )O O Oi i i i i i i i
i51 i51 i51

n

˜5 k u (X ).O i i i
i51

Hence

n n

˜k E[u (X )] # k E[u (X )].O Oi i i i i i
i51 i51

This shows that expression (63) is indeed maximal for

. . . , M˜ ˜(X , X ).1 n

Example 7

Suppose that all companies use an exponential utility

function,

1
u (x) 5 [1 2 exp(2a x)],j jaj

where aj is the constant risk aversion of company j,

j 5 1, . . . , n. From (67), we get

˜k exp(2a X ) 5 L (69)j j j

or

ln kln L j
X̃ 5 2 1 . (70)j a aj j

Summing over j, we obtain an equation that deter-

mines L:

n n ln k1 j
W 5 2 ln L 1 . (71)O O

a aj51 j51j j

Let us introduce a, which is defined by the equation

1 1 1
5 1 . . . 1 . (72)

a a a1 n

Then it follows from (71) that

n ln kj
2ln L 5 aW 2 a . (73)O

aj51 j

Substitution in (70) yields

n ln ka ln k a jiX̃ 5 W 1 2 (74)Oi a a a aj51i i i j

for i 5 1, . . . , n. Thus company i will assume the

fraction (or quota) qi 5 a/ai of total wealth W plus a

possibly negative side payment

n ln kln k a jid 5 2 . (75)Oi a a aj51i i j

It is easily verified that

q 1 . . . 1 q 5 1 (76)1 n

and

d 1 . . . 1 d 5 0. (77)1 n

We note that the qi’s are inversely proportional to the

risk aversions and that they are the same for all Pareto

optimal risk exchanges. Pareto optimal risk exchanges

differ only by their side payments.

Example 8

Suppose now that all companies use a power utility

function of the first kind, such that

c11 c11s 2 (s 2 x)j j
u (x) 5 , j 5 1, . . . , n, (78)j c(c 1 1)s j

where sj is the level of saturation of company j. From

(67) we get

cX̃j
k 1 2 5 L (79)S Dj sj

or

sj 1/cX̃ 5 2 L 1 s . (80)j j1/ckj

Summing over j, we obtain an equation which deter-

mines L:

n nsj 1/cW 5 2 L 1 s . (81)O O j1/ckj51 j51j

Let

s 5 s 1 . . . 1 s (82)1 n
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denote the combined level of saturation. Then it fol-

lows from (81) that

s 2 W
1/cL 5 . (83)n sjO 1/ckj51 j

Substitution in (80) yields

s si i

1/c 1/ck ki iX̃ 5 W 1 s 2 s (84)i n i ns sj jO O1/c 1/ck kj51 j51j j

for i 5 1, . . . , n. Hence again is of the formX̃i

X̃ 5 q W 1 d . (85)i i i

But note that now both the quotas and the side pay-

ments vary, such that

d 5 s 2 q s. (86)i i i

If we write this result in the form

˜s 2 X 5 q (s 2 W ), (87)i i i

it has the following interpretation: The expression si 2
is the amount that is missing for maximal satisfac-X̃i

tion. It is a fixed percentage of s 2 W, which is the

total amount missing for all companies combined.

Example 9

Consider n investors with identical power utility func-

tions of the second kind

12cx 2 1
u (x) 5 , j 5 1, . . . , n.j 1 2 c

From (67), we see that

2c˜k X 5 L (88)j j

or

1/c 21/cX̃ 5 k L . (89)j j

Summing over j, we get

n

1/c 21/cW 5 k L , (90)O j
j51

or

W
21/cL 5 . (91)n

1/ckO j
j51

If we substitute this in (89) we see that

X̃ 5 q W (92)i i

with

1/ckiq 5 . (93)ni

1/ckO j
j51

Hence each investor assumes a fixed quota of total

wealth. As in the case of power utility functions of the

first kind, the quotas vary, but now there are no side

payments.

Example 10

Let n 5 2. Suppose that u1(x) 5 x and u2(x) 5 u(x),

a utility function in the proper sense with u0(x) , 0.

Then condition (67) tells us that

˜k 5 k u9(X ).1 2 2

But this means that is a constant, say d. HenceX̃2

5 W 2 d. This result is not really surprising: sinceX̃1

company 1 is not risk averse, it will assume all the

risk!

We have presented selected examples in which the

Pareto optimal risk exchanges are of an attractively

simple form. In general, this is not the case. The fol-

lowing example illustrates the point.

Example 11

Let n 5 2. Suppose that u1(x) and u2(x) are power

utility functions of the second kind with parameters

c1 5 1 and c2 5 2, that is, that

1
u (x) 5 ln x, u (x) 5 1 2 for x . 0.1 2 x

From (67) we obtain the condition that

1 1
2˜ ˜X 5 (X ) . (94)1 2k k1 2

Together with the condition that 1 5 W, this˜ ˜X X1 2

results in a quadratic equation. Its solution is

1
2X̃ 5 W 2 (Ïa 1 4aW 2 a), (95)1 2

1
2X̃ 5 (Ïa 1 4aW 2 a), (96)2 2

with a 5 k2/k1. Here and are obviously not linear˜ ˜X X1 2

functions of W.
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Example 7 helps us to understand the Pareto opti-

mal risk exchanges in the general case. Let u1(x),

. . . , un(x) be arbitrary utility functions, and let ˜(X ,1

. . . , be a Pareto optimal risk exchange. For givenX̃ )n

W 5 w, . . . , maximizes expression (62).˜ ˜(X , X )1 n

Hence 5 is a function of the total wealth w.˜ ˜X X (w)i i

Let j Þ h. According to Theorem 1

˜ ˜k u9(X (w)) 5 k u9(X (w)). (97)j j j h h h

Differentiation with respect to w yields

˜ ˜dX dXj h˜ ˜k u0(X (w)) 5 k u0(X (w)) . (98)j j j h h hdw dw

Dividing (98) by (97) we see that

˜ ˜dX dXj h˜ ˜r (X (w)) 5 r (X (w)) . (99)j j h hdw dw

From this and the observation that

˜ ˜dX 1 . . . 1 dX 5 dw, (100)1 n

it follows that

1
˜r (X )j j˜dX 5 dw, j 5 1, . . . , n. (101)j n 1O ˜r (X )h51 h h

Thus the family of Pareto optimal risk exchanges can

be obtained as follows. For a particular value of w, say

w0, we can choose . . . , Then˜ ˜X (w ), X (w ).1 0 n 0

. . . , are determined as the solution of˜ ˜X (w), X (w)1 n

(101), subject to the boundary condition at w 5 w0.

As an application of (101), we revisit Examples 8

and 9. For a unified treatment, we suppose that

1
5 ax 1 b , j 5 1, . . . , n. (102)jr (x)j

We want to verify that a Pareto optimal risk exchange

is of the form

X̃ 5 q W 1 d , (103)j j j

or equivalently,

˜dX 5 q dw (104)j j

for a set of quotas q1, . . . , qn and side payments d1,

. . . , dn. From (101) and (102) we obtain

˜ ˜aX 1 b aX 1 bj j j j˜dX 5 dw 5 dw (105)nj aW 1 b˜(aX 1 b )O h h
h51

with b 5 b1 1 . . . 1 bn. Hence, by (103)

aq W 1 ad 1 bj j j˜dX 5 dw (106)j aW 1 b

To see when this ratio is equal to qj, we distinguish

two cases:

(1) If b Þ 0, it suffices to set

ad 1 bj j
q 5 , j 5 1, . . . , n.j b

(2) If b 5 0, q1, . . . , qn are arbitrary quotas, and the

side payments are fixed:

bj
d 5 2 , j 5 1, . . . , n.j a

Theorem 1 tells us that for a Pareto optimal risk

exchange . . . , there is a random variable L˜ ˜(X , X ),1 n

such that

˜L 5 k u9(X ), for i 5 1, . . . , n. (107)i i i

Since 5 is a function of total wealth w, it˜ ˜X X (w)i i

follows that L 5 L(w) is a function of w. Differenti-

ating (107), we get

˜ ˜L9 5 k u0(X )X9. (108)i i i i

Dividing this equation by (107) and using (101), we

obtain

L9 1
5 2 . (109)nL 1O ˜r (X )h51 h h

This shows that L is a decreasing function of total

wealth.

9. THE SYNERGY POTENTIAL
We consider the n companies introduced in the pre-

ceding section and assume that (W1, . . . , Wn), the

allocation of their total wealth W, is not Pareto opti-

mal. How much can the companies gain through co-

operation?

An answer is provided by the synergy potential h.

This is the largest amount x that can be extracted

from the system without hurting any of the compa-

nies, that is, such that there is a risk exchange (X1,

. . . , Xn) with

X 1 . . . 1 X 5 W 2 x (110)1 n

and

E[u (X )] $ E[u (W )], for i 5 1, . . . , n. (111)i i i i
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It is clear that for x 5 h we must have equality in

(111) and . . . , must be a Pareto optimal risk˜ ˜(X , X )1 n

exchange of W 2 h.

Example 12 (continued from Example 7)

Suppose that all utility functions are exponential.

Since . . . , is a Pareto optimal risk exchange˜ ˜(X , X )1 n

of W 2 h, it follows that

a
X̃ 5 (W 2 h) 1 d , for i 5 1, . . . , n. (112)i iai

Then we use the condition that

˜E[u (X )] 5 E[u (W )] (113)i i i i

to see that

2aW ah2a d 2a Wi i i iE[e ]e 5 E[e ], (114)

or

a 1 1
2a W 2aWi ih 2 d 5 ln E[e ] 2 ln E[e ]. (115)ia a ai i i

Summation over i yields an explicit expression for the

synergy potential:

n 1 1
2a W 2aWi ih 5 ln E[e ] 2 ln E[e ]O

a ai51 i

n

2a W 1/ai i iE[e ]P
i515 ln . (116)

2aW 1/aE[e ]

Example 13 (continued from Example 8)

We assume that the companies use power utility func-

tions of the first kind. According to (87)

˜s 2 X 5 q (s 2 W 1 h). (117)i i i

From

˜E[u (X )] 5 E[u (W )]i i i i

it follows that

c11 c11 c11q E[(s 2 W 1 h) ] 5 E[(s 2 W ) ]. (118)i i i

Taking the (c 1 1)-th root and summing over i, we

get

n

c11 1/(c11) c11 1/(c11)E[(s 2 W 1 h) ] 5 E[(s 2 W ) ] .O i i
i51

(119)

This is an implicit equation for the synergy potential

h.

Example 14 (continued from Example 9)

Suppose that each of n investors has a power utility

function of the second kind. Hence

X̃ 5 q (W 2 h). (120)i i

From

˜E[u (X )] 5 E[u (W )]i i i i

we get

12c 12c 12cq E[(W 2 h) ] 5 E[W ] if c Þ 1, (121)i i

and

ln q 1 E[ln(W 2 h)] 5 E[ln W ] if c 5 1. (122)i i

Taking the (1 2 c)-th root in (121) and summing over

i, we obtain the equation

n

12c 1/(12c) 12c 1/(12c)E[(W 2 h) ] 5 E[W ] , (123)O i
i51

which determines h if c Þ 1. By exponentiating (122)

and summing over i we obtain the equation

n

E[ln( W2h)] E[ln W ]ie 5 e , (124)O
i51

which determines h if c 5 1.

Example 15

In the situation of Example 10, equality of the ex-

pected utilities implies that

X̃ 5 W 2 E[W ] (125)1 2

and 5 d, whereX̃2

u(d) 5 E[u(W )]. (126)2

Thus d 5 p, the certainty equivalent of W2. It follows

that

˜h 5 W 2 (X 1 p)1

5 E[W ] 2 p. (127)2

We can use the synergy potential to construct a par-

ticular Pareto optimal risk exchange. The idea is to

first extract h from the companies and then to dis-

tribute h to the companies according to (101). The

resulting Pareto optimal risk exchange ( . . . ,˜ ˜X , X )1 n

of W is characterized by the condition that

˜E[u (X (W 2 h))] 5 E[u (W )], for i 5 1, . . . , n.i i i i

(128)
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Example 16 (continued from Example 12)

In the case of exponential utility functions we have

a
X̃ 5 W 1 d .i iai

To determine the side payments, we substitute this

expression in (128) to see that

2aW ah2a d 2a Wi i i iE[e ] e 5 E[e ].

From this it follows that

a 1 1
2aW 2a Wi id 5 h 1 ln E[e ] 2 ln E[e ]. (129)i a a ai i i

Substituting for h, we obtain finally the result that

na 1 1
2a W 2a Wj j i id 5 ln E[e ] 2 ln E[e ],Oi a a aj51i j i

for i 5 1, . . . , n. (130)

Example 17

For power utility functions of the first kind, we found

that a Pareto optimal risk exchange . . . , is˜ ˜(X , X )1 n

such that

˜s 2 X 5 q (s 2 W ).i i i

From this and (128), we obtain the condition that

c11 c11 c11q E[(s 2 W 1 h) ] 5 E[(s 2 W ) ].i i i

Thus

1/(c11)c11E[(s 2 W ) ]i iq 5 . (131)S Di c11E[(s 2 W 1 h) ]

Finally, we use (119) to get an explicit formula for the

resulting quota:

c11 1/(c11)E[(s 2 W ) ]i iq 5 , for i 5 1, . . . , n.ni

c11 1/(c11)E[(s 2 W ) ]O j j
j51

(132)

Example 18

For power utility functions of the second kind, we

found that 5 qiW. From condition (128), we seeX̃i

that

1/(12c)12cE[W ]iq 5 , if c Þ 1, (133)S Di 12cE[(W 2 h) ]

and

E[ln W ]ie
q 5 , if c 5 1. (134)i E[ln( W2h)]e

From (123) and (124), it follows that

12c 1/(12c)E[W ]iq 5 , if c Þ 1, (135)ni

12c 1/(12c)E[W ]O j
j51

and

E[ln W ]ie
q 5 , if c 5 1. (136)ni

E[ln W ]jeO
j51

In the Appendix we derive Hölder’s inequality and

Minkowski’s inequality as a by-product of Examples 12

and 14.

10. MARKET AND EQUILIBRIUM
Again we consider the n companies that were intro-

duced in Section 8. We concluded that the companies

should settle on a Pareto optimal risk exchange. Be-

cause this is a rich family, more definite answers are

desirable. In the last section we proposed a particular

Pareto optimal risk exchange. In this section an alter-

native proposal, due to Borch and Bühlmann, is dis-

cussed, which is based on economic ideas.

We suppose that random payments are traded in a

market, whereby the price H(Y) for any payment Y (a

random variable) is calculated as

H(Y) 5 E[CY]. (137)

Here C is a positive random variable. We assume that

H(Y) represents the price as of the end of the year.

Hence the price of a constant payment must be iden-

tical to this constant. Therefore we must have E[C] 5
1. By writing the right-hand side of (137) as E[Y] 1
E[CY] 2 E[C]E[Y], we see that the price of Y can

also be written in the form

H(Y) 5 E[Y] 1 Cov(Y, C), (138)

that is, the price of a payment is its expectation mod-

ified by an adjustment that takes into account the

market conditions. Alternatively, we can interpret the

price of a payment as its expectation with respect to

a modified probability measure, Q, that is defined by

the relation

E [Y] 5 E[CY] for all Y. (139)Q

In other words, C is the Radon-Nikodym derivative of

the Q-measure with respect to the original probability
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measure. For this reason Bühlmann (1980, 1984)

calls C a price density.

Company i will want to buy a payment Yi in order

to

maximize E[u (W 1 Y 2 H(Y ))]. (140)i i i i

A payment solves this problem if and only if theỸi

condition

˜ ˜ ˜ ˜u9(W 1 Y 2 H(Y )) 5 CE[u9(W 1 Y 2 H(Y ))]i i i i i i i i

(141)

is satisfied.

To see the necessity of this condition, suppose that

is a solution of (140). Let V be an arbitrary randomỸi

variable; we consider the family

˜Y 5 Y 1 tV.i i

According to our assumption, the function

f(t) 5 E[u (W 1 Y 2 H(Y ))]i i i i

is maximal for t 5 0. Hence

˜ ˜f9(0) 5 E[u9(W 1 Y 2 H(Y ))(V 2 E[CV])] 5 0.i i i i

(142)

We rewrite this equation as

˜ ˜E[V{u9(W 1 Y 2 H(Y ))i i i i

˜ ˜2 CE[u9(W 1 Y 2 H(Y ))]}] 5 0. (143)i i i i

Since it is valid for all V, the random variable inside

the braces must be zero, and condition (141) follows.

To see that condition (141) is sufficient, consider a

payment that satisfies (141) and any other paymentỸ

Y. From (57) it follows that

u (W 1Y 2H(Y ))i i i i

˜ ˜# u (W 1Y 2H(Y ))i i i i

˜ ˜ ˜ ˜1 u9(W 1Y 2H(Y ))(Y 2H(Y )2Y 1H(Y ))i i i i i i i i

˜ ˜5 u (W 1Y 2H(Y ))i i i i

˜ ˜ ˜ ˜1 CE[u9(W 1Y 2H(Y ))](Y 2H(Y )2Y 1H(Y )).i i i i i i i i

(144)

Taking expectations and using the definition of H, we

see that

˜ ˜E[u (W 1 Y 2 H(Y ))] # E[u (W 1 Y 2 H(Y ))],i i i i i i i i

(145)

which completes the proof.

We note that the optimal is unique apart from anỸi

additive constant; hence 2 is unique. It can˜ ˜Y H(Y )i i

be interpreted as the optimal payment that has a

zero price, and we refer to it as the net demand of

company i.

Given C, the random variable

n

˜ ˜[Y 2 H(Y )] (146)O i i
i51

is the excess demand. The companies can maximize

simultaneously their expected utilities only if the ex-

cess demand vanishes (this is the market clearing con-

dition). This leads us to the following definition.

A price density C and the payments . . . ,˜ ˜Y , Y1 n

constitute an equilibrium, if (146) vanishes and if

(141) is satisfied for i 5 1, . . . , n.

Note that an equilibrium induces a risk exchange

. . . , with˜ ˜(X , X ),1 n

˜ ˜ ˜X 5 W 1 Y 2 H(Y ), for i 5 1, . . . , n. (147)i i i i

Then condition (141) states that

˜ ˜u9(X ) 5 CE[u9(X )], for i 5 1, . . . , n. (148)i i i i

From this and Theorem 1 it follows that the risk

exchange implied by an equilibrium is Pareto optimal.

Furthermore, (109) is satisfied with L 5 C. In partic-

ular, this shows that C is a decreasing function of to-

tal wealth.

The converse is true in the following sense. Suppose

that (W1, . . . , Wn) is already Pareto optimal; then W1,

. . . , Wn and C constitute an equilibrium, if we set

u9(W )i iC 5 . (149)
E[u9(W )]i i

Moreover,

˜ ˜Y 2 H(Y ) 5 0 for i 5 1, . . . , n.i i

This can be seen from (67) (with replaced by Wi)X̃i

and (141).

Example 19 (continued from Example 7)

Assuming that all companies use exponential utility

functions, we gather from (141) that

1
Ỹ 5 2W 2 ln C 1 k , (150)i i iai

where k i is a constant. Hence the net demand of com-

pany i is
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1˜ ˜Y 2 H(Y ) 5 2W 2 ln C 1 E[CW ]i i i iai

1
1 E[C ln C]. (151)

ai

In the equilibrium the sum over i must vanish. Hence

1
0 5 2W 2 ln C 1 k, (152)

a

where k is a constant. Since E[C] 5 1, it follows that

the equilibrium price density is

2aWe
C 5 . (153)

2aWE[e ]

Finally, a little calculation shows that

˜ ˜ ˜X 5 W 1 Y 2 H(Y )i i i i

a a
5 W 1 E[CW ] 2 E[CW]ia ai i

a a
5 W 1 H(W ) 2 H(W ) (154)ia ai i

in the equilibrium.

Example 20 (continued from Example 8)

We assume that the companies use power utility func-

tions of the first kind. Hence

c(s 2 x)iu9(x) 5 , i 5 1, . . . , n,i csi

and

˜s 2 X 5 q (s 2 W ), i 5 1, . . . , n;i i i

see (87). Then according to (148) the equilibrium

price density is

c˜u9(X ) (s 2 W )i iC 5 5 . (155)
c˜E[u9(X )] E[(s 2 W ) ]i i

The equilibrium quotas are best determined from the

condition that H(Wi) 5 or˜H(X ),i

H(W ) 5 H(s 2 q (s 2 W ))i i i

5 s 2 q s 1 q H(W ). (156)i i i

Hence

s 2 H(W ) E[C(s 2 W )]i i i iq 5 5 ,i s 2 H(W ) E[C(s 2 W )]

for i 5 1, . . . , n. (157)

Example 21 (continued from Example 9)

If all companies use the same power utility function

of the second kind,

2cu9(x) 5 x , i 5 1, . . . , n,i

we know that

X̃ 5 q W, i 5 1, . . . , n;i i

see (92). Hence the equilibrium price density is

2c˜u9(X ) Wi iC 5 5 . (158)
2c˜E[u9(X )] E[W ]i i

Again, the equilibrium quotas are best obtained from

the condition that H(Wi) 5 5 qiH(W ). Thus˜H(X )i

2cH(W ) E[CW ] E[W W ]i i iq 5 5 5 ,i 2c11H(W ) E[CW] E[W ]

for i 5 1, . . . , n. (159)

Remark 4

From (138) it follows that for any random variable Y

H(Y) 2 E[Y] 5 b(H(W ) 2 E(W )) (160)

with

Cov(Y, C)
b 5 , (161)

Cov(W, C)

where C is now the equilibrium price density. Formula

(160) is close to a central result in the capital-asset-

pricing model (CAPM). As an illustration, we revisit

our three preceding examples. Thus

2aWCov(Y, e )
b 5 (162)

2aWCov(W, e )

in Example 19,

cCov(Y, (s 2 W ) )
b 5 (163)

cCov(W, (s 2 W ) )

in Example 20, and

2cCov(Y, W )
b 5 (164)

2cCov(W, W )

in Example 21. Note that for c 5 1 (quadratic utility

functions), (163) reduces to the classical CAPM for-

mula

Cov(Y, W )
b 5 . (165)

Var[W]
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11. PRICING OF DERIVATIVE SECURITIES
In the equilibrium the price of a payment Y is H(Y),

given by formulas (137), (138) or (139), where C is

the equilibrium price density. Typically, the random

variable Y is the value of an asset or a derivative se-

curity at the end of a period. Under certain assump-

tions, the price of a derivative security can be ex-

pressed in terms of the price of the underlying asset.

First, we assume that the random variable C has a

lognormal distribution, that is,

ZC 5 e , (166)

where Z has a normal distribution, say with variance

n2. Since

1
2E[C] 5 exp E[Z] 1 n (167)S D

2

must be 1, it follows that E[Z] 5 2(1/2)n2. According

to Formulas (153), (155), and (158), the assumption

of lognormality for C means that W is normal in Ex-

ample 19, that s 2 W is lognormal in Example 20, or

that W is lognormal in Example 21.

Let us consider a particular asset. We denote its

value at the end of the period by S and assume that

the random variable S has a lognormal distribution.

Then we can write

RS 5 s e , (168)0

where s0 is the observed price of the asset at the be-

ginning of the period, and R has a normal distribution,

say, with mean m and variance s2. We assume that the

joint distribution of (Z, R) is bivariate normal with

coefficient of correlation r. Then we obtain the follow-

ing expression for the moment-generating function of

R with respect to the Q-measure:

tR tR Z1tRE [e ] 5 E[Ce ] 5 E[e ]Q

1
2 25 exp t(m 1 rns) 1 t s . (169)F G

2

This shows that in the Q-measure the distribution of

R is still normal, with unchanged variance s2 and new

mean

m 5 m 1 rns. (170)Q

Luckily, there is a more practical expression for mQ.

Since s0 is the price of the asset at the beginning of

the period, we have

2d 2ds 5 e H(S) 5 e E [S], (171)0 Q

where d is the risk-free force of interest. Hence we

obtain the equation

1
2d R 2d 2s 5 e s E [e ] 5 e s exp m 1 s ,S D0 0 Q 0 Q 2

(172)

which yields

1
2m 5 d 2 s . (173)Q 2

Now let us consider a derivative security, whose

value at the end of the period is f(S), a function of

the underlying asset. Its price at the beginning of the

period is

2d 2d Re H( f(S)) 5 e E [ f(s e )], (174)Q 0

where R is normal with mean given by (173) and var-

iance s2. For example, for a European call option with

strike price K, f(S) 5 (S 2 K)1. Then (174) can be

calculated explicitly, which leads to the Black-Scholes

formula.

Remark 5

The method can be generalized to price derivative se-

curities that depend on several, say, m assets. Let

RiS 5 s e , (175)i i0

denote the value at the end of the period of asset i,

where si0 is the observed price of asset i at the begin-

ning of the period, i 5 1, . . . , m. The assumption is

now that (Z, R1, . . . , Rm) has a multivariate normal

distribution. Then in the Q-measure (R1, . . . , Rm) has

still a multivariate normal distribution, with un-

changed covariance matrix, but modified mean vector,

such that

1
E [R ] 5 d 2 Var[R ], for i 5 1, . . . , m. (176)Q i i2

In the framework of Examples 19–21, practical re-

sults can also be obtained for derivative securities on

assets for which S is a linear function of W.

In Example 19 suppose that S 5 qW. Then

2aW 2aSE[Se ] E[Se ]
E [S] 5 5 (177)Q 2aW 2aSE[e ] E[e ]

with a 5 a/q. According to (171), the value of a is

determined from the condition that

2aSE[Se ]
d5 e s . (178)02aSE[e ]

Then the price of a derivative security with payoff f(S)

is given by the expression
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2aSE[ f(S)e ]
2d 2de E [ f(S)] 5 e . (179)Q 2aSE[e ]

This is the Esscher method in the sense of Bühlmann.

We note that it also works for assets where S and W 2
S are independent random variables: here

2aS 2a( W2S)E[Se e ]
E [S] 5Q 2aS 2a( W2S)E[e e ]

2aS 2a( W2S) 2aSE[Se ]E[e ] E[Se ]
5 5 . (180)

2aS 2a( W2S) 2aSE[e ]E[e ] E[e ]

Hence a is determined from (178) with a replaced

by a.

In Example 20 we suppose that S 5 q(s 2 W ). Then

c cE[S(s2W ) ] E[SS ]
E [S] 5 5 . (181)Q c cE[(s 2 W ) ] E[S ]

The value of c is determined from the condition that

11cE[S ]
d5 e s , (182)0cE[S ]

and the price of a derivative security with payoff f(S)

is given by the expression

cE[ f(S)S ]
2d 2de E [ f(S)] 5 e . (183)Q cE[S ]

In Example 21 we suppose again S 5 qW. Then

2c 2cE[SW ] E[SS ]
E [S] 5 5 . (184)Q 2c 2cE[W ] E[S ]

The value of c is now determined from the condition

that

12cE[S ]
d5 e s , (185)02cE[S ]

and the price of a derivative security with payoff f(S)

is given by the expression

2cE[ f(S)S ]
2d 2de E [ f(S)] 5 e . (186)Q 2cE[S ]

Formula (183) is also acceptable, if c, the solution of

(182) is negative. In this case the solution of (185) is

positive, which leads to (186). But this is again (183),

with a negative c. Formulas (182) and (183) summa-

rize the Esscher method that was proposed by Gerber

and Shiu (1994a, 1994b).

Remark 6

Using (178), we can rewrite (179) as

2aSE[ f(S)e ]
2de E [ f(S)] 5 s . (187)Q 0 2aSE[Se ]

Similarly, (183) can be rewritten as

cE[ f(S)S ]
2de E [ f(S)] 5 s . (188)Q 0 11cE[S ]

It may be surprising that d does not appear in these

expressions for the prices, but of course the values of

a and c are functions of d.

Remark 7

The Esscher method summarized by Formulas (182)

and (183) has some attractive features. For example,

if S has a lognormal distribution, it has also a log-

normal distribution in the Q-measure. In particular, it

reproduces the formula of Black-Scholes.

12. BIBLIOGRAPHICAL NOTES
A broad, less self-contained review has been given by

Aase (1993). The article by Taylor (1992a) is highly

recommended.

In Section 5 the premiums are determined by the

principle of equivalent utility. If this principle is

adopted in a dynamic model, there is an intrinsic re-

lationship between the underlying utility function and

the resulting probability of ruin; see Gerber (1975).

The optimality of a stop-loss contract of Section 6

seems to have been discovered by Arrow (1963). Its

minimal variance property has been discussed by oth-

ers, for example, by Kahn (1961).

The theorem of Borch in Section 8 can be found in

the books of Bühlmann (1970) and Gerber (1979). In

some of the literature, the family of utility functions

satisfying (102) is called the HARA family (hyperbolic

absolute risk aversion).

In Sections 9 and 10 we discussed Pareto optimal

risk exchanges of a specific form. Other proposals

have been discussed by Bühlmann and Jewell (1979)

and by Baton and Lemaire (1981). Solutions that are

not Pareto optimal have been proposed by Chan and

Gerber (1985), Gerber (1984), and Taylor (1992b).
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APPENDIX

ECONOMIC PROOFS OF TWO FAMOUS
INEQUALITIES
In Section 9 we introduced the synergy potential. By

observing that this quantity is non-negative, we can

derive two mathematical inequalities in a nonconven-

tional way. In Example 12, h $ 0 implies that

n

2aW 1/a 2a W 1/ai i iE[e ] # E[e ] ; (189)P
i51

see (116). With the substitutions

2a Wi iZ 5 e , r 5 a /a,i i i

Inequality (189) can be written as

n n

r 1/ri iE Z # E[Z ] . (190)P PF Gi i
i51 i51

Because the substitutions can be reversed, this ine-

quality is valid for arbitrary random variables Z1 . 0,

. . . , Zn . 0 and numbers r1 . 0, . . . , rn . 0 with

1/r1 1 . . . 1 1/rn 5 1. In the mathematical literature,

Inequality (190) is known as Hölder’s inequality.
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The other inequality is Minkowski’s inequality. It

states that for p . 1 and random variables Z1 . 0,

. . . , Zn . 0 the following inequality holds:

p 1/pn n

p 1/pE Z # E[Z ] . (191)O OFS D Gi i
i51 i51

The proof starts with h $ 0 in (119). Then it suffices

to set

Z 5 s 2 W , p 5 c 1 1,i i i

and to observe that substitutions can be reversed. If

p , 1, the inequality sign in (191) should be reversed.

This follows from Example 14, with the substitution

Z 5 W , p 5 1 2 c.i i

In the limit p → 0, we obtain

n n

exp E ln Z $ exp (E[ln Z ]);O OH F S DGJi i
i51 i51

this can be seen from (124). Note that (191) also

holds for p 5 1, in which case it is known as the tri-

angle inequality.

DISCUSSIONS

HANGSUCK LEE*

Dr. Gerber and Mr. Pafumi have written a very inter-

esting paper. My comments concern Section 7, on the

optimal fraction of reinsurance.

In the particular case in which u(x) is an exponen-

tial utility function with parameter a and S has a

gamma distribution with parameters a and b, the cal-

culation can be also done explicitly. If S , gamma(a,

b), then E(S) 5 a/b and Var(S) 5 a/b2. For a(1 2
w) , b, the expected utility is

1
2aw1awP1a(12w)S(1 2 E[e ])

a

a
1 b

2aw1awP5 1 2 e ,S S D D
a b 2 a(1 2 w)

which is maximal for

a 1
1 2 w̃ 5 b 2 3 .S D

P a

*Mr. Lee is a graduate student in actuarial science, Department of
Statistics and Actuarial Science, at the University of Iowa, 241
Schaeffer Hall, Iowa City, Iowa 52242-1409.

To compare this result with the one in normal case,

we rewrite it as

P 2 E(S) E(S)
1 2 w̃ 5 .

a Var(S) P

If we assume a, b and P tend to infinity such that P 2
E(S) and Var(S) remain constant, then

P 2 E(S)
—1 2 w̃ → .

a Var(S)

In another particular case in which u(x) is an ex-

ponential utility function with parameter a, and S has

an inverse Gaussian distribution with parameters a

and b (Bowers et al. 1997, Ex. 2.3.5), the calculation

can be again done explicitly. If S , Inverse Gaus-

sian(a, b), then E(S) 5 a/b and Var(S) 5 a/b2. For

a(1 2 w) , b/2, the expected utility is

1 1
2aw1awP1a(12w)S 2aw1awP(1 2 E[e ]) 5 1 2 eS

a a

1/2
2a(1 2 w)

3 exp a 1 2 1 2 .H F S D GJD
b

It is maximal for

2 2P 2 (a/b) b
1 2 w̃ 5 3 .

2P 2a

To compare this result with that in normal case, we

rewrite it as

E(S)
1 1S D

PP 2 E(S) E(S)
1 2 w̃ 5 .

a Var(S) 2 P

If we assume a, b and P tend to infinity such that P 2
E(S) and Var(S) are constant, then

P 2 E(S)
—1 2 w̃ → .

a Var(S)
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ALASTAIR G. LONGLEY-COOK*

As Charles Trowbridge (1989, p. 11) points out in

Fundamental Concepts of Actuarial Science, utility

theory forms the philosophical basis of actuarial sci-

ence, and yet there is barely a mention of the subject

in the actuarial literature beyond Chapter 1 of Actu-

arial Mathematics (Bowers et al. 1997). Dr. Gerber

and Mr. Pafumi do the profession a great service by

publishing this excellent summary of utility functions

and their applications.

The authors employ three general forms of utility

functions, the exponential and the power of the first

and second kind, in their examples. The reasonable-

ness of these functions should be evaluated in any

practical application. In particular, the upper and

lower bounds on the two kinds of power functions may

render them unreasonable assumptions in situations

in which results can vary widely from expected.

It is also generally agreed in finance theory that for

a utility function to be realistic with regard to eco-

nomic behavior, its absolute risk aversion with regard

to wealth W, defined as A(W ) 5 2U 0(W )/U 9(W ),

should be a decreasing function of W; and while there

is some debate over the slope of its relative risk aver-

sion, defined as R(W ) 5 2W[U 0(W )/U 9(W )], empir-

ical evidence suggests that it should be constant over

W (Rubinstein 1976). If the variable x in the paper’s

first example [Formula (1)] is defined as change in

wealth W with respect to initial wealth W0, then the

negative exponential utility function satisfies the de-

creasing-absolute and constant-relative risk aversion

criteria with respect to initial wealth W0. As the au-

thors point out, the absolute risk aversion of the

power utility function of the first kind [Formula (10)]

increases with wealth, a condition that may prove un-

realistic.

Note that, despite the differences in utility func-

tions, the general form of a risk adjustment (which

reduces the expected value to its certainty equivalent)

is dependent on the variance of gain, rather than the

standard deviation or some other measure or risk [see

Formulas (23), (26), and (28)]. This is consistent with

mean/variance risk analysis and challenges the use of

other risk measures.

What is then surprising is that the classical value

for b given in Formula (165) is generated by the quad-

ratic utility function, rather than the exponential. The

*Alastair G. Longley-Cook, F.S.A., is Vice President and Corporate
Actuary, Aetna, 151 Farmington Ave., RC2D, Hartford, Connecticut
06156, e-mail, longleycookag@aetna.com.

‘‘expected return versus beta’’ relationship of the cap-

ital-asset-pricing model (CAPM)

E(r ) 5 r 1 b [E(r ) 2 r ]i f i M f

can be derived from a variance-proportionate risk pre-

mium (Bodie et al. 1996, p. 243)

2E(r ) 2 r 5 ks .i f

So it is strange that the exponential utility function

assumption, with its variance-proportionate risk pre-

mium [see Formula (23)] does not lead to the clas-

sical value for b. Further explanation of the utility

function assumptions inherent in CAPM would be

helpful.
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HEINZ H. M LLER*Ü
The authors are to be congratulated for their very el-

egant article that treats in a very concise and clear

style the most important applications of utility theory

in insurance and finance. The article not only is an

excellent survey but also introduces the synergy po-

tential of risk exchanges as a new concept. In the in-

surance context this synergy potential measures in a

most convincing way the welfare gain resulting from

reinsurance.

It may be of some interest to address the question,

which types of utility functions lead to a decision-

making consistent with empirical observations? The

following result due to Arrow (1971) helps to answer

this question:

Assume that a risk-less and a risky asset are available

as investment opportunities. Then, under an in-

crease of initial wealth investors with increasing (de-

creasing) risk aversion decrease (increase) the dollar

amount invested in the risky asset.

*Heinz H. Müller, Ph.D., is Professor of Mathematics at the University
of St. Gallen, Bodanstrasse 4, CH-9000 St. Gallen, Switzerland,
e-mail, Heinz.Mueller@unisg.ch.
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Therefore, Arrow postulates a decreasing risk aver-

sion. According to this postulate power utility func-

tions of the first kind and, in particular, the quadratic

utility function may not be appropriate for practical

purposes.

The results in the survey allow also for some com-

ments on the properties of equilibrium in financial

markets. As shown in Section 10, an equilibrium risk

exchange . . . , with a price density C is Pareto˜ ˜(X , X )1 n

optimal, and there exist k1, . . . , kn such that (107)

and (109) hold with L 5 C. This provides the basis

for the construction of a fictitious investor represent-

ing the market. Up to an additive constant the utility

function û of this representative investor is given by

û9(w) 5 C(w).

From (109) we conclude that û is strictly concave and

for the risk aversion of the representative investor we

obtain

û0(w) C9(w) 1
r̂(w) 5 2 5 2 5 .nû9(w) C(w) 1O ˜r (X )h51 h h

Instead of the risk aversion

u0(x)
r(x) 5 2 ,

u9(x)

it is convenient in this context to use the risk toler-

ance, which is defined by

1
t(x) 5 .

r(x)

Hence the risk tolerance of the representative investor

is given by

n

˜t̂(w) 5 t (X ),O h h
h51

and the risk-sharing rule (101) can be written as

˜t (X )j j˜dX 5 dw, j 5 1, . . . , nj t̂(w)

or

˜t (X )j j
X̃9 5 .j t̂(w)

Taking logarithms and differentiating leads to

˜ ˜X0 t9(X ) t̂9(w)j j j ˜5 X9 2j˜ ˜X9 t (X ) t̂(w)j j j

1 ˜5 [t9(X ) 2 t̂9(w)].j jt̂(w)

This implies in particular

˜ ˜sign(X0) 5 sign[t9(X ) 2 t̂9(w)],j j j

and we conclude

˜ ˜—t9(X ) . t̂9(w) → X0 . 0 (*).j j j
(,) (,)

In the context of financial markets, W corresponds to

the total market capitalization and X̃j, j 5 1, . . . , n,

denotes investor j’s payoff as a function of W. Accord-

ing to Arrow’s postulate risk tolerances are increasing

and (*) can be interpreted as follows:

Investors who are more (less) sensitive to wealth

changes than the market choose a convex (concave)

payoff function.

As Leland (1980) pointed out in his article on risk-

sharing in financial economics, convex payoff func-

tions can be considered as generalized portfolio in-

surance strategies. A discussion of the shape of payoff

functions in market equilibrium can be found, for ex-

ample, in Chevallier and Mueller (1994).

The relationship (*) may be of some interest for the

investment strategy of pension funds. Because of sol-

vency problems, such an investor may be more sensi-

tive to wealth changes than the market for low values

of w, that is, . for w , w0. For high values˜t9(X ) t̂(w)j j

of w, funding problems disappear and ,˜t9(X ) t̂9(w)j j

for w . w0 may hold. This leads to a payoff function

X̃j as depicted in Figure 1.

A payoff function that is convex for low w and con-

cave for high w is, for example, obtained by investing

Figure 1
Payoff Function for a Pension Fund

•
Xj

ww
tj'(Xj) > t'(w) tj'(Xj) < t'(w)

0; ;

;
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in the market portfolio, selling calls with high strike

prices and buying puts with low strike prices.
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STANLEY R. PLISKA*

This paper provides a survey of applications of utility

theory to selected risk management and insurance

problems. I would like to compliment the authors for

writing such a clear, interesting, and yet concise treat-

ment of how utility functions can be used for decision-

making in the actuarial context. Applications studied

range from the fundamental problem faced by a com-

pany of setting an insurance premium to esoteric is-

sues such as synergy potentials.

I would also like to complement the authors by ex-

tending their exposition in two directions. Both direc-

tions have to do with the literature relating utility the-

ory and financial decision-making. The first direction

pertains to the utility functions themselves. An im-

portant, classical treatment of the use of utility func-

tions for decision-making is by Fishburn (1970). In

recent years, however, financial economists such as

Bergman (1985), recognizing the limited realism as-

sociated with standard utility functions, have devel-

oped some generalizations reflecting changing pref-

erences across time. For example, Constantinides

(1990) studied a utility function model that reflects

habit formation, and Duffie (1992) covered a related

notion called recursive utility. It would be interesting

to consider how in the actuarial context preferences

might change with time.

Another direction the authors could have pursued

is the well-known application of utility functions for

portfolio management. More than 25 years ago Robert

Merton, the recent winner of a Nobel prize in econom-

ics, wrote several papers (see his 1990 book) in which

for continuous time stochastic process models of asset

*Stanley Pliska, Ph.D., is CBA Distinguished Professor of Finance, De-
partment of Finance, College of Business Administration, University
of Illinois at Chicago, 601 South Morgan Street, Chicago, Ill. 60607,
e-mail, srpliska@uic.edu.

prices the objective is to maximize expected utility of

consumption and/or terminal wealth. He employed a

dynamic programming approach, an approach that is

elegant yet often impractical due to computational

difficulties. More recently, martingale methods have

been employed to successfully solve these continuous

time optimal portfolio problems [for example, see

Pliska (1997) and the book by Boyle et al. (1998),

which the authors already reference]. Since maximiz-

ing expected utility is the objective preferred by finan-

cial economists for managing portfolios of assets and

liabilities, the relevance for the actuarial and insur-

ance industries is obvious.
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ELIAS S.W. SHIU*

This is a masterful paper on utility functions and many

of their applications in actuarial science and finance.

I am particularly grateful for this paper because I once

wrote in TSA (Shiu 1993) a defense for the use of

utility theory.

We are indebted to the authors for giving a precise

explanation of the approximation formula (28). This

result can be found in textbooks such as Bowers et al.

(1997, Ex. 1.10.a) and Luenberger (1998, p. 256, Ex.

8). The derivation of (28) outlined in these two books

combines a second-order approximation with a first-

order approximation. Formula (28) probably first ap-

peared in Pratt (1964, Eq. 7). Pratt (1964, p. 125)

was rather careful in stating that he assumed the third

absolute central moment of Gz to be of smaller order

than Var[Gz]; ordinarily, it is of order (Var[Gz])3/2.

*Elias S.W. Shiu, A.S.A., Ph.D., is Principal Financial Group Founda-
tion Professor of Actuarial Science, Department of Statistics and Ac-
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The formulas for the two kinds of power utility func-

tions, as given by (2) and (4), are rather unsymmet-

rical because there is an s in (2) but not in (4). By

modifying (4) as

12c(x 2 s) 2 1
u(x) 5 , x . s, (D.1)

1 2 c

we can obtain a certain symmetry between the two

kinds of utility functions. Then (11) becomes

c
r(x) 5 , (D.2)

x 2 s

(89) becomes

1/c 21/cX̃ 5 k L 1 s , (D.3)j j j

and so on.

My final comment is motivated by the reference to

the so-called Merton ratio in Section 7. The Merton

ratio was also discussed in a paper in this journal

(Boyle and Lin 1997). It means that an investor with

a power utility function of the second kind will use a

proportional asset investment strategy. The result was

derived by Merton (1969) using Bellman’s equation.

An elegant proof using the insights from the martin-

gale approach to the contingent-claims pricing theory

can be found in the review paper by Cox and Huang

(1989, p. 283). In the context of discrete-time mod-

els, the result was obtained by Mossin (1968); further

discussions can be found in survey articles such as

Hakansson (1987) and Hakansson and Ziemba (1995)

and in various papers reprinted in Ziemba and Vickson

(1975). Merton (1969) also showed that an investor

with an exponential utility function would invest a

constant amount in the risky asset.
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VIRGINIA R. YOUNG*

I congratulate the authors on writing an excellent

summary of applications of utility functions in evalu-

ating risks, with special emphasis on insurance eco-

nomics. Their paper will serve as a valuable reference

for actuaries, both practitioners and researchers.

In this discussion, I simply wish to point out that

Arrow’s theorem on the optimality of stop-loss (or de-

ductible) insurance is more generally true; see the au-

thors’ Section 6. Specifically, suppose a decision

maker orders risks according to stop-loss ordering;

that is, a (non-negative) loss random variable X is con-

sidered less risky under stop-loss ordering than a loss

Y if

t tE S (x)dx # E S (x)dxX Y
0 0

for all t . 0, in which SX is the survival function of X;

namely, SX(x) 5 Pr(X . x). Then, for a fixed premium

P 5 f(E[h(X)], in which f is a function such that

f(x) $ x and f9(x) $ 1, the decision maker will prefer

stop-loss insurance with deductible d given implicitly

by

`

P 5 f E S (x)dx .S DX
d

*Virginia R. Young, F.S.A., Ph.D., is Assistant Professor of Business,
School of Business, 975 University Avenue, University of Wisconsin–
Madison, Madison, Wisconsin 53706, e-mail, vyoung@bus.wisc.edu.
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Van Heerwaarden, Kaas, and Goovaerts (1989) prove

this result for f(x) 5 (1 1 l)x, while constraining the

indemnity benefit to have a derivative between zero

and one. The result is true when one only constrains

the indemnity benefit to lie between zero and the loss

amount, as in the authors’ Inequality (54); see Gollier

and Schlesinger (1996).

The optimality of stop-loss insurance is intuitive by

noting that the authors’ proof of Inequality (56) is

independent of the (increasing, concave) utility func-

tion and by recalling that the common (partial) or-

dering of random variables by risk-averse decision

makers is stop-loss ordering (Wang and Young 1998).

I encourage the authors and interested researchers to

explore whether or not one can generalize other re-

sults from expected utility theory.

REFERENCES

GOLLIER, C., AND SCHLESINGER, H. 1996. ‘‘Arrow’s Theorem on

the Optimality of Deductibles: A Stochastic Dominance

Approach,’’ Economic Theory 7:359–63.

VAN HEERWAARDEN, A.E., KAAS, R., AND GOOVAERTS, M.J. 1989.

‘‘Optimal Reinsurance in Relation to Ordering of Risks,’’

Insurance: Mathematics and Economics 8:261–67.

WANG, S.S., AND YOUNG, V.R. 1998. ‘‘Ordering Risks: Expected

Utility Theory versus Yaari’s Dual Theory of Risk,’’ Insur-

ance: Mathematics and Economics, in press.

AUTHORS’ REPLY

HANS U. GERBER AND GÉRARD PAFUMI
Mr. Lee shows how the optimal degree of proportional

reinsurance can be determined explicitly if S has a

gamma or an inverse Gaussian distribution. He also

shows that Formula (60) is obtained in both cases as

a limiting result. This raises the question, What re-

sults can be obtained under the more general as-

sumption that S has an infinitely divisible distribu-

tion? Let

1 g
2 3u(z) 5 z 1 z 1 z 1 . . .

2 6

denote the cumulant generating function of a random

variable with infinitely divisible distribution, having

mean 1, variance 1, and third central moment g. Now

suppose that S has a distribution such that its mo-

ment generating function is

zS au(z/b)M (z) 5 E[e ] 5 e (R.1)S

for some a . 0 (the shape parameter) and b . 0 (the

scale parameter). Then

a
E[S] 5 ,

b

a
Var[S] 5 ,

2b

3
a a

E S 2 5 g .FS D G 3b b

This construction is illustrated by the following table.

Distribution u(z) g

Normal
1 2z 1 z
2

0

Gamma 2ln(1 2 z) 2

Inverse Gaussian 1 2 Ï1 2 2z 3

The expected utility (59) is

1
5 (1 2 exp(2aw 1 awP)M (a(1 2 w))).Sa

Using (R.1), we see that we must minimize the ex-

pression

a(1 2 w)
awP 1 au .S D

b

Setting the derivative equal to 0, we gather that isw̃

obtained from the condition

a a(1 2 w̃)
P 2 u9 5 0. (R.2)S D

b b

In general, there is no explicit formula for 1 2 How-w̃.

ever, it is possible to obtain an asymptotic formula.

Let P → `, a → `, b → `, such that

a
P 2 5 P 2 E[S] 5 constant,

b

a
5 Var[S] 5 constant.

2b

Substituting u9(z) 5 1 1 z 1 (g/2)z2 1 . . . in (R.2),

we get

P 2 E[S] 2 a(1 2 w̃)Var[S]

2ga
22 (1 2 w̃) Var[S] 1 . . . 5 0.

2b

Finally, we develop 1 2 in powers of 1/b and obtainw̃

the formula

P 2 E[S] g P 2 E[S]
1 2 w̃ 5 1 2 1 . . . .H J

a Var[S] 2b Var[S]

Again, Formula (60) results in the limit.
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We appreciate the comments of Mr. Longley-Cook.

He finds it strange that the assumption of exponential

utility functions does not lead to the classical expres-

sion for b. However, if Formula (162) is expanded in

powers of a, the classical Formula (165) can be ob-

tained as a first-order approximation. In this context

we note that Formulas (23), (26), and (28) are also

first-order approximations. For a deeper discussion of

the CAPM formula, refer to Section 8.2.4 of Panjer et

al. (1998) and the references quoted therein.

Dr. Müller raises some very interesting points. The

risk tolerance function (the reciprocal of the risk aver-

sion function) leads to simplification of some formulas

and is a useful and appealing tool by its own.

Dr. Pliska and Dr. Shiu point out an important ap-

plication of utility theory: the construction of an op-

timal portfolio, that is, a portfolio that maximizes the

expected utility of an investor. This problem can in-

deed be discussed in the framework of Sections 10 and

11 of the paper. Consider an investor with wealth w

at time 0 and utility function u(x) to assess the ter-

minal wealth at time T. Let d . 0 denote the riskless

force of interest. In the market random payments can

be bought. Their price is given by a price density C.

Thus the price (due at time 0) for a payment of Y (due

at time T) is E[CY]. If the investor buys Y, the2dTe

terminal wealth will be

dTW 5 we 1 Y 2 E[CY]. (R.3)T

The problem is to choose Y that maximizes E[u(WT)].

In analogy to (141), the solution is characterized by

the condition

u9(W ) 5 CE[u9(W )] (R.4)T T

with WT given by (R.3). For the utility functions of

Examples 1 to 3, explicit expressions for the optimal

terminal wealth are obtained. For an exponential util-

ity function, u9(x) 5 the optimal terminal wealth2axe ,

is

1 1
dTW 5 we 2 ln C 1 E[C ln C]. (R.5)T a a

For a power utility function of the first kind, u9(x) 5
(1 2 x/s)c, x , s, we obtain

dTs 2 we
1/cW 5 s 2 C , (R.6)T 111/cE[C ]

and for a power utility function of the second kind,

u9(x) 5 x2c, the result is that

dTwe
21/cW 5 C . (R.7)T 121/cE[C ]

We note that WT is the solution of a static optimiza-

tion problem. If we make appropriate additional as-

sumptions about the market, we can determine the

optimal investment strategy, that is, the dynamic

strategy that replicates the optimal terminal wealth

WT. As in Section 10.6 of Panjer et al. (1998), assume

that two securities are traded continuously, the risk-

less investment (which grows at a constant rate d),

and a non-dividend-paying stock, with price S(t) at

time t, 0 # t # T. We make the classical assumption

that {S(t)} is a geometric Brownian motion, that is,

X(t)S(t) 5 S(0)e

where {X(t)} is a Wiener process with parameters m

and s2 and parameters m* 5 d 2 (1/2)s2 and s2 in

the risk-neutral measure. Then

h*
S(T) m* 2 m

aTC 5 e , with h* 5 , (R.8)S D 2S(0) s

where a is such that E[C] 5 1. Note that h* is defined

as in Gerber and Shiu (1994) and Gerber and Shiu

(1996), that is, as the value of the Esscher parameter

h, for which the discounted stock price process is a

martingale under the transformed measure. As a prep-

aration, we recall a result concerning the self-financ-

ing portfolio that replicates the payoff of a European-

type contingent claim. Consider a European

contingent claim with terminal date T and payoff func-

tion P(z); that is, at time T the payoff P(S(T)) is due.

Let V(z, t) denote its price at time t, and h(z, t) the

amount invested in stocks in the replicating portfolio

at time t, if S(t) 5 z. It is well known that

V(z, t)
h(z, t) 5 z ; (R.9)

z

see Formula (10.6.6) in Panjer et al. (1998), page 95

of Baxter and Rennie (1996), or Section 9.3 of Dothan

(1990).

Let us revisit the three examples. From (R.5) and

(R.8) we obtain

1 aT
dTW 5 we 1 E[C ln C] 2T a a

h* h*
2 ln S(T) 1 ln S(0). (R.10)

a a

Consider a European contingent claim with terminal

date T and payoff function

1 aT h*
dT(z) 5 we 1 E[C ln C] 2 2 ln z.P

a a a

Its payoff differs from WT only by the constant
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2(h*/a) ln S(0). Since w is the initial price of WT, it

follows that

h*
2dTV(z, 0) 5 w 2 e ln z.

a

Hence, by (R.9), the initial amount invested in stocks

must be

h*
2dTh(z, 0) 5 2 e .

a

Similarly, at time t, the amount invested in stocks in

the replicating portfolio is

h* m 2 m*
2d(T2t) 2d(T2t)2 e 5 e , 0 # t # T. (R.11)

2a as

Note that its discounted value is constant.

For a power utility function of the first kind, we

gather from (R.6) and (R.8) that the optimal terminal

wealth is

h*/cdTs 2 we S(T)
aT/cW 5 s 2 e .S DT 111/cE[C ] S(0)

Now consider a European contingent claim with ter-

minal date T and payoff function

dTs 2 we
h*/c(z) 5 exp(aT/c)z .P 111/cE[C ]

Note that

h*/c(S(T)) 5 (s 2 W )S(0) . (R.12)P T

It follows that the initial price of the contingent claim

is

2dT h*/cV(z, 0) 5 (se 2 w)z ,

with S(0) 5 z. Then according to (R.9) we have

h*
2dT h*/ch(z, 0) 5 (se 2 w)z . (R.13)

c

To determine the replicating portfolio for WT, we re-

write (R.12) as

2h*/cW 5 s 2 (S(T))S(0) .PT

Hence the amount invested in stocks at time 0 must

be

2h*/c2h(S(0), 0) S(0)

which, by (R.13), simplifies to

h*
2dT2 (se 2 w).

c

Similarly, at time t the amount invested in stocks in

the replicating portfolio is

h*
2d(T2t)2 (se 2 W )tc

m 2 m*
2d(T2t)5 (se 2 W ), (R.14)t2cs

where Wt is the wealth at time t, a constant fraction

of what is missing for total satisfaction.

For a power utility function of the second kind, the

optimal terminal wealth is

2h*/cdTwe S(T)
2aT/cW 5 e .S DT 121/cE[C ] S(0)

This time consider a European contingent claim with

terminal date T and payoff function

dTwe
2h*/c(z) 5 exp(2aT/c)z .P 121/cE[C ]

Its price at time 0 is

2h*/cV(z, 0) 5 z w.

Hence, by (R.9),

h*
h(z, 0) 5 2 V(z, 0).

c

For the replicating portfolio of WT, the amount in-

vested in stocks is the same constant fraction of total

wealth, that is,

h*
2 w

c

at time 0, and

h* m 2 m*
2 W 5 W (R.15)t t2c cs

at time t.

At first sight, expressions (R.11), (R.14), and (R.15)

are quite different. However, they can be written in a

common form: in all three cases the optimal trading

strategy is to invest the amount

m 2 m*
2d(T2t)e (R.16)

2 d(T2t)s r(e W )t

at time t (0 # t , T) in stocks, where r is the risk

aversion function. For a verification, simply use (9),

(10), and (11) of the paper.

These results can be generalized to the case where

n $ 2 different types of stocks are traded. Let Sk(t)

denote the price of stock k. We assume that
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{S1(t), . . . , Sn(t)} is an n-dimensional geometric

Brownian motion with drift parameters m1, . . . , mn

. . . , in the risk-neutral measure) and covar-(m*, m*1 n

iances sik. It is assumed that the covariance matrix

has an inverse (the precision matrix); its elements are

denoted by the symbol tik. Then we find the following

generalization of (R.8):
*hn k nS (T)kaTC 5 e , with h* 5 (m* 2 m )tP OS D k i i ikS (0)k51 i51k

defined as in Section 7 of Gerber and Shiu (1994),

and again a such that E[C] 5 1. According to (R.5),

(R.6), (R.7), the optimal terminal wealth is

1 aT
dTW 5 we 1 E[C ln C] 2T a a

n1
2 h* ln S (T)O k ka k51

n1
1 h* ln S (0)O k ka k51

for an exponential utility function,
*h /cn kdTs 2 we S (T)kaT/cW 5 s 2 e P S DT 111/cE[C ] S (0)k51 k

for a power utility function of the first kind and
*2h /cn kdTwe S (T)k2aT/cW 5 e P S DT 121/cE[C ] S (0)k51 k

for a power utility function of the second kind. In each

case we can relate the optimal terminal wealth to the

payoff of an appropriately chosen European contin-

gent claim. Such a payoff can be replicated by a dy-

namic portfolio, whereby the amount hk is invested in

stocks of type k at time t. Let V(z1, . . . , zn, t) denote

the price of the portfolio at time t (if Sk(t) 5 zk, k 5
1, . . . , n). Then

V(z , . . . , z , t)1 nh (z , . . . , z , t) 5 zk 1 n k zk

for k 5 1, . . . , n. See, for example, Formula (8.35)

in Gerber and Shiu (1996). The portfolio that repli-

cates WT is the optimal investment strategy. For an

exponential utility function, we find that the amount

h*k 2d(T2t)2 e (R.17)
a

must be invested in stocks of type k at time t. For a

power utility function of the first kind, the corre-

sponding amount is

h*k 2d(T2t)2 (se 2 W ), (R.18)tc

and for a power utility function of the second kind,

the amount invested in stocks of type k at time t is

h*k2 W . (R.19)tc

Again, (R.17), (R.18), and (R.19) can be written in

a common form. Now the optimal trading strategy

consists of investing the amount

n

(m 2 m*)tO i i ik
h* i51k 2d(T2t) 2d(T2t)2 e 5 e

d(T2t) d(T2t)r(e W ) r(e W )t t

(R.20)

of stock of type k at time t. It follows that the total

amount invested in stocks at time t is

n n

(m 2 m*)tO O i i ik
k51 i51 2d(T2t)e . (R.21)

d(T2t)r(e W )t

Hence at any time the amount invested in stock of

type k must be the constant fraction

n

(m 2 m*)tO i i ik
i51

(R.22)n n

(m 2 m*)tO O i i ik
k51 i51

of the total amount invested in stocks. Note that this

fraction does not depend on the utility function.

If we divide expressions (R.16), (R.20), or (R.21) by

Wt, we obtain the Merton ratios. For more results and

further background, refer to Chapter 8 of Duffie

(1992) and the annotated references.

Needless to say, we share Dr. Shiu’s enthusiasm for

utility functions. We were pleased to see that utility-

related papers by Longley-Cook (1998) and Frees

(1998) have been published by the NAAJ. Dr. Shiu

proposes a more symmetric treatment of power utility

functions. The utility function in his Formula (D.1) is

standardized at the point j 5 1 1 s. If s , 0, it may

be natural to standardize it at j 5 0, which yields the

formula

12c 12c(x 2 s) 2 (2s)
u(x) 5 , x . s.

2c(1 2 c)(2s)

Then, in the limit s → 2`, we obtain u(x) 5 x.
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Dr. Young points out a generalization of Arrow’s re-

sult concerning optimality of a stop-loss coverage. The

assumption that the premium for h(X) should depend

only on E[h(X)] is surprising but crucial for the con-

clusion. A result for more realistic premium calcula-

tion principles is given in Theorem 9 of Deprez and

Gerber (1985). For example, if the company has an

exponential utility function with parameter b and if

the reinsurance premiums are calculated according to

the exponential premium principle with parameter

a . 0, the exponential utility is maximized for h(S) 5
wS (proportional coverage) with w 5 b/(a 1 b). More

general results can be found in Young (1998).

We would like to add a pedagogical comment. It is

possible to proceed in Examples 20 and 21 the same

way as in Example 19, that is, by first determining the

net demand of company i. In Example 20, it is

s 2 E[CW ]i i 1/c2W 1 s 2 C ,i i 111/cE[C ]

and in Example 21, it is

E[CW ]i 21/c2W 1 C .i 121/cE[C ]

For an equilibrium, the sum over i must vanish, which,

together with E[C] 5 1 yields (155) and (158) of the

paper.

We are most grateful to the six discussants for their

valuable and stimulating comments.
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