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A B S T R A C T  

This paper examines a class of premmm functtonals which are 0) comonotomc 
addmve and (u) stochastic don'unance preservative The representauon for this class 
is a Iransformatton of the decumulat.ve d,stnbutlon function It hds close connec- 
tions with the recent developments m economic decision theory and non-addmve 
measure theory. Among a few elementary members of this class, the propomonal 
hazard transtorm seem~ to stand out as being most plausible Ibr actuaries. 
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1. I N T R O D U C T I O N  

Insurance premium calculation lies at the heart- ot actuarial science Tradmonally, 
an insurance risk X is defined as a non-negative loss random variable, and a 
premmm calculation principle refers to a functional X~---~ [0, coo). The search for a 
sound premmm calculation principle has been the subJect of numerous actuarial 
papers, and It is still debatable which principle to choo,~e 

In insurance practme, the most w~dely used method is to base calculation on the 
first two moments Since loss chstrtbuttons are often highly skewed, the first two 
moments cannot rightly reflect the level of insurance risk. Ramsay (1994) also 
considered the third moment m his premium calculation formula Nevertheless, the 
moment-based method generally violates first order stochastic dolnmance. The 
mconst~,tency of the moment-based methods are d~scussed by a number of authors 
(eg  Venter, 1991; Robbm, 1992) 

Besides the moment methods which are commonly used in practice, a few 
theoretical premmm pnnclples are proposed (e g.Goovaerts et al, 1984) Most of 
them are rooted m utility theory, for instance, the exponential utdtty principle 
(Freffelder, 1979; Gerber, 1979) and the Esscher pnnctple (Buhlmann, 1980) 
However, Reach (1986) showed that none of these theoretical principles satisfies 
both the elementary requirements 0) scale-mvanance H(aX)= all(X), and 0i) 
translatlon-mvanance H(X + b) = H(X) + b 
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The Dutch principle (van Heerwaarden and Kaas, 1992) is defined as 

H(~=E[X+Om~{X-~E(X?,O}] ,  0 < 0 <  1, ~ >  1 

It outperforms all prewous ones in the sense that it is scale-lnvarlant and translatlon- 
invarlant In addition, it preserves second order stochastic dominance. While the risk 
load component in the Dutch principle has a reinsurance explanation, the relative 
loading is too restrictive (below 100%). In practice, the price of  a higher layer in 
casualty insurance may contain a risk load which can be many multiples of the 
expected loss. 

Denneberg (1990) proposed an absohlte deviation principle: 

H ( X ) = E ( a  3 + 0 T ( x ? .  0 < 0 <  1, 

where r(X)ls the average absolute deviation from the median This functional ts also 
scale-mvanant and translauon-invanant. For an insurance risk with less than 50% 
chance of  incurring of  a claim, this functional coincides with the expected value 
principle H(X) = (1 + O)E(X),O < 1, which limits its apphcablhty 

Venter (1991) discussed no-arbitrage imphcatlons of  insurance pricing. He ob- 
served that the only premluln principles that preserve layer addltlVlty are those that 
can be generated from transformed distributions, where the premium for any layer is 
the expected loss for that layer under the transformed distribution. Based on 
considerations of  layer-add~t~wty, Venter advocated using adjusted distribution 
principles. Albrecht (1992) showed through an example that not every adJustment 
to a distribution gives a reasonable premium principle, and he argued that further 
theoretical development would be needed to amve  at a proper method of adJust- 
ment. 

Inspired by Venter 's insightful observauons, Wang (1995) proposed a propor- 
tional transform m the hazard rate, or in other words, a power transform in the 
decumulat~ve distribution function. The proportional hazard transform demonstrates 
many desirable properties especially in pricing excess-of-loss layers. The present 
paper was conceived as an attempt to generalize the PH-transform method. 

It is the author 's intention to take a general axiomatic approach. This paper first 
settles on the basic reqmrements for a premmm principle, and then searches for 
premium principles which satxsfy these basic requirements. The representation of 
this class turns out to be a transform of the decumulatlve distribution funcuon. It 
includes the PH-transform principle (Wang, 1995) and the absolute deviation 
principle (Denneberg, 1990) as special cases. This class of  prelmum principles 
has close connections with the recent developments in (i) economic decision theory 
under uncertainty and (n) a mathematical branch concerning non-addmve mea- 
sures. 

In section 2 we show that decumulatlve distribution functions serve a special role 
as layer net premmm densmes. In section 3 we examine some desirable properties 
for a premmm functional. In sections 4-6 we discuss a class of premium functlonals 
by transforming the decumulative distribution function In section 7 we draw 
connections with non-additive measure theory In section 8 we discuss the imphca- 
tlons in the economics of insurance. 
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2, LAYER NET PREMIUM DENSITY 

An insurance risk X is a non-negatwe random variable whose distribution is defined 
by 

• the cumt, latlve dlstllbutlon function Fx(t) = Pr(X _< t}, or 
• the decumulatlve distribution function S~(t) = Pr{X > t}. 
In general, for a risk X, the expected loss can be evaluated directly from its 

decumulatlve d~strlbunon function: 

fO ° 
E(X) = &,(0at  

Since most insurance contracts contain clauses such as deductible and nlaxnl~Unl 
hnm, ~t is convenient to use a general term of (excess-of-loss) layers. 

Def in i t ion  1. A layer at (a, a + hi  of a rtsk X ts defined as the loss from an eacess-of- 
loss cover 

O, O < X < a ,  
l(a a+h](X) = ( X  - a), a < S < a + h, 

h, a + h <_ X, 

where a ts called the attachment point (retention), and the width h t s  called the 
lmnt 

We smlply use notation ](a,a+/JI, when the risk X Is unphclt ly known. 
One can easdy verify that the decumulatwe distribution function for a layer 

l(a,a+h I IS 

{ Sx (a  + t), t<17, 
Sl(a'a+"](1) = O, I ~ h 

The expected loss (or net premmm) for a layer at (a, a + hi is 

f a  a + h E(l(~,.+h]) = Sx( t )d t  

It ts noted that Sx(t)dt represents the net prenuum for an mfimtesmlal layer at (t,t + 
dt]. Therefore, the function Sx(t) plays an important role as layer net premium 
denstty. 

The question remains as to how to arrive at risk-adjusted premmms for a risk X or a 
layer/~,,,i,i. 
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3 DESIRABLE PROPERTIES FOR A PREMIUM FUNCTIONAL 

3.1. Ordering of risks 

Any premium prmctple mlphcltly mlphes an ordering of preference for all risks. It 
ts a natural reqmrement tor a premium principle to preserve some conm~on ordering 
of risks. As a simple rule of thumb, higher risks should be associated with higher 
premiums. In this section, we will introduce some basic concepts of stochastic 
dominance and apply them to excess-of-loss layers 

3.1.1. First stochastic dominance 

Definition 2. Xi precedes X2 under the .first stochastic dominance (FSD), if the 
dectmndattve dtstrtbutlon functton of Xi ts everywhere lower. 

X t -<I .  X2 t fandonly tJ  S . r , ( t ) < S x z ( t ) , / o r a l l t > _ O  

For two layers at (a, a + h] and (b, b + h] of  risk X, ff a < b, 

Sx(a + t) > S.~(b + t), t > 0 ~ St~,,.~,, (t) > S~,~ , ,  (t), t > 0 

If a premium principle H X ~ [0, c,v) preserves FSD, then for a < b, 

l(bt,+h] ~l,t  l ( ,a+h] ~ H(l(h,h+hl) _< H(l(a,o+h]) 

As part of  the FSD-preserwng requirement, we have. 

C I '  The absolute premmm for layers of  a fixed width should decrease at upper 
layers 

3.1.2. Second stochastic dommance 

Definition 3 Xi ts less dangerous than X 2 (X I -'<D X2) If(I) E(Xi) ~ E(X2), and (tl) 
there exists a once-eros ~ing point to such that 

Sx,( t)  _> Sx,(t)  when t < to, 

Sx,(t)  _< Sx2(t) when t _> to 

The second stochastic dominance (SSD) is a transmve closure of the ordering of  
dangerousness It has become a standard definiuon for a higher risk, partly due to 
Rothschdd and Stlghtz (1970) 

Definition 4 Xi precedes X2 under the second stochastic dominance (Xi '<2,,,I X2) tf 
either of the following two equivalent condttlons holdv (see Kaav et al, 1994) 
1. There exls'ts U,(t = 1,2, . ,n) such that 

Xi d o  Ui, Ui d o  U2, , U , , d o X 2  
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Sx,( t )dt  <_ S,v,(t)dt, for  all x >_ O 

For a task X, consider two layers at (a, a + hi] and (b, b + h2] with the same net 
expected loss, i.e., E(l(,a,. + h,]) = E(l(b,b + h2])' Since the areas underneath the layer 
net premium density for the two layers are the same, when a < b it is necessary that 
hi < h2 In other words, the curve Sl~h+h ,(t) ls generally longer and thinner than 
Sl(aa+h l(t) As In Figure 1, St~,o+h i(t) an2d Sllbh+, l(t) cross once at the point hi 
which xnlphes that the layer at (b,b + h2] is a higher risk" 

](a,a + Ih] "<O I(b,h + h2]" 

If a premium prlnc=ple H. X ~ [0 ,~)  preserves SSD, 

H(l(,,,o + h,l) 
H(I(a,a + h,]) < H(l(h,b + h2]) ~ E(l(a, a + h,]) < 

H(l(b ,5 + h:]) 

E( l(b,b + h21) 

As part of  the SSD-preservtng requirement, we have: 
C2: Higher layer should have a higher percentage loading. 

3.2. Comonotonicity 

The concept of  comonotonlclty was introduced by Yaan (1987) and Schmeldler 
(1986) and has since been playing a very important role in decision theory under 
uncertainty. 

$(t) 

................... t ........... 
' i L  

h t h2 t 

FIGURE 1 Layers with the same expected loss 
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Definition 5 Xi and X2 are comonotontc tf there exist a risk Z and weakly increasmg 
fimcttons f g such that Xi = f(Z) and X2 = g(Z). 

Since layers and quota-shares are always increasing functions of the original risk, 
layers or quota-shares of  the same risk are comonotonlc.  They are bets on the same 
event and neither of  them is hedge against the other. 

Now consider a colnbmed policy for two comonotontc risks Xi and X2. Because 
of  the no-hedge condition, insurers are not willing to give a reduction in the risk- 
load for a combined policy, thus H(Xi + X2) > H(Xi) + H(X2). On the other hand, 
the maximum prenuum that insurers can demand for the combined policy is the .sum 
of two Individual risk premiums,  since otherwise the pol icy-holder  can just  buy 
separate policies, i e ,  H(Xi + Xz) < H(X~) + H(X2). To conclude, premiums should 
be addmve  for comonotonlc  risks'  H(Xi+ Xz) = H(Xi)+ H(X2). 

As part of  the reqmrement  for comonotonlc  addluvtty,  we have. 
C3: Layer premiums should be additive. For any division 0 = Xo < x~ 
< < .\',~ < , 

H(.V) = ~ H(I(,,_ , ',1) 
I = 1  

4 A CLASS OF PREMIUM PRINCIPLES 

4.1. Transforming the decumulative distribution function 

Based on the observation that Sx(t) is the layer net premium density, a natural idea 
would be to modify Sx(t) to get a ' r isk-adjusted '  layer premium density St(t): 

S y ( t )  : 

s ( t )  ' 

0 a a+h b b+h 
t 

FIGURI: 2 An dlustrat~on of transforming the layer premium density 
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Figure 2 illustrates the basic idea of t ransfomlmg the decumulat tve dlstr lbuhon 
funcnon. The mterpretauons ,are as follows: 

1 It is necessary to have H(0) = 0 for a zero risk, whmh reqmres g(0) = 0 
2 The absolute p remmm for layers of the same width is decreasing ff and only 

f f Sv ( t )  ~s weakly  decreasing.  This can be accomphshed  if, and only If, g is an 
Increasing functmn 

3. Increased relative loading When u = Sx(t) ,  the rehmve loading for an 
mfin | tes |mal  layer at (t,t + dt] is 

g[S,~,(1)] _ g(u)  _ g (u)  - 0 

S . ~ , ( t )  , u - 0 ' 

where the relative loading increases with t if, and only if, g is a concave 
functmn of  u. 

4. Layer  addmwty  ~s au tomaucal iy  sausfmd simply because the area under- 
neath the curve Sv(t) is addit ive 

5 General ly ,  f o r a c e r t a m  l o s s P r { X =  I} = 1 w e h a v e H ( l ) = g ( l ) ,  l f w e r e q m r e  
that H( I )  = I then g(1) = I, and Sv(t) = g[Sx(t)] defines another decumulat lve  
&stnbut lon  function 

Based on the above observations,  we now define a class of  premium principles 

Defini t ion 6 For any increasing concaveJunc tmn  g, with g(0) = 0 and g( l )  = 1, we 

define a corresponding p t en u u m prmctple" 

H(X) = g[Sx(0]dt (1) 

The fol lowing properties are straight-forwardly verif ied'  

1 

2. 

E(X) <_ H(X) <_ max(X) 
H ( a X + b ) = a H ( X ) + b ,  a _ > O , b _ > O .  
Since {', 

s~,.,. +~(.)= s , . ( ~ ) ,  

we have 

O _ < u < b ,  
u > b ,  

/0 [ (. H ( a X  + b) = ldu + g S x  ~ du 

= b + a g [Sr ( t ) ]d t  = a l l ( X )  + b 

Layer  addmvl ty :  When a risk X is d ivided into layers at {(x,, x, + l], t = 0,1, 
} 

X = I(0,,,1 + I(,,,,21 + , 0 = xo < xl  < x2 
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For a layer at (x,, x, ÷ i], we have 

H(I(, , , , ,  + ,]) = g[Sx(t)]dt 
1 

Addmg up the layer premmms,  we have 

/o H(I( . . . . . .  ,1) = g[Sx(t)]dt = H(X) 
t = O  

H(X) preserves the FSD Xt ~1~, X2 ==,,. H ( X t )  _< H(X2) 

4.2. Relative loading at higher layers 

Consider  the premium pnncJple m (1) 

H(X) = g[Sx(t)]dt, 

where g is an mcreasmg concave funcuon with g(0) = 0 and g ( l )  = 1 
Letting u ---- Sx(t) ,  the relattve loading for an infinitesimal small layer at (t, t + dt] 

IS 

H( I(,,, + d,l) _ g[Sx(t)] _ g(u) - g(O) 
= + S x ( 1 )  u - 0 

As t increases, u = Sx(t)  decreases.  Since g(u) zs concave, ~b(t) is an increasing 
functmn of  t, ~ e. increased relauve loading at upper layers 

Furthermore, ~t is easy to see that 

lira 4~(t)= hm g ( u ) -  g(O) , , - 0  u - 0  - g ' ( 0 )  

It is noted that the relative loading at upper layers does not exceed g ' (0)  
In property/casualty (re)insurance, the risk load for extremely high layers consists 

for the most part of the total premium. As observed in Venter (1991), a common 
phenomenon m reinsurance ratemaking is the mlmmum rate-on-hne,  which ts the 
premium dtv~ded by the coverage hrmt. Consider  a layer at (t, t + h] Let the width 
(hmtt) h be fixed and the at tachment point t move to the extreme right tail 
General ly  the net premium E(I(,,, + hi) goes to zero as t goes to infimty. If g ' (0)  
is f imte,  the risk-adjusted premmm diminishes at the extreme right tat[. 

H(I(t.,+hl) _< g'(O)E(l(t,t+hl) ~ O, as t ~ cxD 

Therefore,  based on the m m m m m  rate-on-hne phenomenon, tt may be desirable to 
have g ' (0)  = oo. 
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4.3. P r e s e r v i n g  the SSD 

Theo rem 1. The premuon prmclple m (1) preserves the second stochastm dom- 
171agice 

X'I ~2,,d X2 ~ H(XI)  < H(X2) 

Proof:  We only need to show that H(X) m (1) preserves the ordering of  dangerous- 
ness Assume that E(Xi) _< E(X2) and there exists to such that 

Sx,(t)  > S~5(t ) when t < to, 

Sx,(t)  < S,x~(t) when t >_ to. 

Now we construct a decumulauve dlstnbutmn function. 

Sz ( t )  = ,~ '¢{ s . v , ( t ) , s . v : ( , ) }  = f, &. , ( l ) ,  t < t0; 
[ s.v~(t), t > / 0  

Since the relative loading mcleases at upper layers, we have 

H(Z)  - H(X, )  > 

and 

H(Z)  - H(X2) < 

and the difference (2)-(3) yields 

H(X2) - H(X, )  > 

~fo °° 
g[S,v, (to)] [S~ (t) - Sx, (t)]dt (2) 

S,v, (Io) 

g[Sx, (to)] fo '° Sx, (to) [&., (t) - s.~.~ (t)]d, (3) 

~0 ~ 
g[Sx,(t0)] [&.:( ,)  - s.y, (0]dt  > 0 

&., (I0) . 
El 

4.4. Sub-additivity 

in Wang (1995), a proof(due to Ole Hessalager) was given for the sub-ad&tlvlty of  
the PH-transform prmmple That proof can be generalized to any transform g which 
is Increasing and concave 

Theorem 2. For any two non-negative randonl varlablea U and V regardless of 
dependence, the following inequality holds for the prenltunl principle (I). 

H( U + V) < H( U) + H(V) 

Proof:  It is a straightforward generahzatlon of a proof m Wang (1995). [] 
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4.5. Extra loading for parameter uncertainty 

In pracnce, actuaries often encounter parameter uncertainty in thmr modehng. A 
common method to deal wtth parameter uncertamty ts to use a secondary mixing 
dtstnbutlon, that is, to describe the loss distribution as Sx( t  I O) where 0 ~tself has 
another dtstnbunon. It ~s a desirable property for a prermum functional to ymld extra 
risk load for parameter uncertainty. Now we demonstrate that the premmm func- 
tlonals in (1) possess this desirable property. 

Applying Jensen's mequahty to the concave funcnon g(z), we have 

Eog[Sx(t I 0)] < g[EoSx(t  I 0)] = g[Sx(t)] 

Therefore, for the premmm prmmple m (I), 

= g[&(t)ldt  2 Fog[Sx(t I 0)]dt = & H ( X l  0), 

with strict mequahty unless 0 is degenerative 
As a specml case, if U 7~ V and X is a mixture' 

X = f U, with p robabd l ty  a > 0, 

L V, with probabdxty I - a > 0; 

then for the premmm prlnmple m (I), H(Jt~ > a l l (U)  + (1 - a )H(V)  

4.6. Vertical slicing and comonotonic additivity 

Recall that the net expected loss E(X) is equal to the area below the curve Sx(t) .  
While verncal shcmg gives E(X) = f ~  Sx( t )dt ,  horizontal shctng yields that (see 
Figure 3) 

/o' E(X~ = Si. I (q)dq. 

where the reverse S~. I (q) may not be uniquely defined, however, It does not affect 
the mtegranon. 

One can easdy verify that for an mcreasmg funcnon g wxth g(0) = 0 and g(1) = 1, 

:0 :0 H(X)  ---- g[Sx(t)]dt = S~ I (q)dg(q) (4) 

Wtth the atd of  hortzontal shcmg, we can now examme the concept of  comono- 
tomclty m terms of  layer premmm dens~nes 

Lemma 1. If X and Y are comonotomc, then the laver premzum densities are addlttve 
m the horizontal dtrecuon 

S ; '  (q) + S{  I (q) = S -I ,~ . v(q), O < q <_ 1 
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~ ~ 

Sl(q) t 

FIGURE 3 S h c m g  a rink vemca l ly  and horizontal ly 

Proof: See Denneberg (1994, p 57; 1990, p. 186). 

The o r em 3 The premmm principle m (1) ts addmve for comonotomc rtsks. 

Proof: From (4) and Lemma I we have 

J0 i0 H(X + Y~ = S~_ r(q)dg(q) = [S,-) (q) + S?' (q)dg(q) = H(X) + H(Y) 
[] 

5 SOME ELEMENTARY TRANSFORMS 

In this section we xdentlfy some members within the class (I) :  

Jo H(X) = g[Sx(t)]dt, 

where g is increasing concave with g(0) = 0 and g ( l )  = 1. We will especial ly look at 
some one-parameter  famlhes of  elementary transforms 

5.1. Proportional hazard transform 

The PH-transform principle (Wang, 1995) ns the slmpllest  member  of the class ( l )  
with 

I 

g(x)  = x ~ ,  p >  1 

It IS easy to see that g~(0) = c-~ = for p > 1. 
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In Wang (1995), the following notation is used for the risk-adJusted premmm: 

= 

5.2. Dual-power functions 

The dual-power transform is a power transform of the cdf 

F,.(,) = IF.,.(0 F ~ > l, 

whmh Imphes that 

Sy(t) = g[S~ (t)], g(x) = 1 - ( l - x )  c', cv>  I, 

where g is increasing concave with g(0) = 0 and g(l)  = I. 
Since g~(0) = c~, the relative loading at upper layers is bounded by (e~ - 1) 

5.3. Denneberg's absolute deviation principle 

The absolute deviation prlnmple in Denneberg (1990) Is equivalent to the following 
pmcewlse linear transform (0 < r < 1) 

g(x) = ~ ' ( I  + r ) x ,  0 _ < ' v < 0 5 ,  
r + ( 1 - r ) x ,  0 5 < x <  1 t. 

When Sv(0) < 0 5, H(X) = (1 + r)E(A~, whmh is the same as the expected value 
prmmple 

Since g '(0) = 1 + r, the relative loading at upper layers cannot exceed 100%. 

5.4. Quadratic function 

The transform 

g ( x )  : ( l  + , . )x  - ,.x 2, 0 < r <  1, 

corresponds to the Gini principle which was also discussed m Denneberg (1990) 
Since g '(0) = 1 + r, the relative loading at upper layers cannot exceed 100% 
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5.5. Square-root functions 

{ - - - ~ -  r > 0 ,  
g ( x )  = ~er~-~ , 

x,  r = 0 

One can verify that 

0 5r 

g '(0) = ~/1 + r -  1 < cxz 

5.6. Exponential functions 

l [ _e_Or 
g ( x )  = I-e-" ' c~ > O, 

X, ~ = 0  

One can verify that 

g ' ( 0 ) - -  l - e  -a  
- - < c x z  

5.7. Logarithmic functions 

One can verify that 

( log( I +r_Q 
g ( x ) =  ~ '  r > 0 ;  

I .x ,  r = 0  

r 
g ' ( 0 )  - l o g ( l  + ,.) 

<cx~ 

5.8. Mixing and composing 

From the elementary transforms one can infinitely construct many other inembers of  
the class (1). 

Let g , ( i =  1,2, ,n) be increasing concave functions with g , ( 0 ) =  0 and 
g , ( l )  = 1. 

(I) For p, >_ 0 with Z ' : =  I P, = I, the function g = ~ ; ' =  I P,g, is also an mcreas- 
mg concave function with p(O) = 0 and g(I )  = 1. 

(n) The function g(u)  = g2[gl (u)] is also an increasing concave function with 
g(0) = 0 and g( l )  = 1 
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By mixing and composing,  one can get some two-pararneter farmhes of premmm 
principles. For instance, H(X)  = OE(X) + (1 - 0)Tr,~(X), (0 < 0 < 1). 

5.9. Remarks 

(I) Among  all the above e lementary  transforms, only the PH-transform has 
g~(0) : ~ .  This special feature will become mlportant  in the performance 
test in the next section. 

(u) In the deflmtlon 6, one can al low g ( 1 ) - ¢  1, except  for the property 
E(X) < H(X)  < max(X) ,  all other propert ies stdl hold. A smlple example  
is H(X) = cTrp(X), (c > 0) 

6. A PERFORMANCE TEST 

6.1. Mean-variance analysis 

The ma,n-stream defimtlon for a higher risk is based on FSD or SSD Since all the 
premmm principles defined In (1) preserve FSD and SSD, we can now use some 
other criteria, namely the mean-variance (or higher moments)  analysis, which has 
been widely used m finance and insurance risk theory 

Example 1: Consider the following two risks 

f ¼, 0 _< t < 4, Su(t) (two point)  
l 0, 4 < t  

Sw(t)  = ~ (Pareto)  

where both have the same mean (=1). While the two-point risk U has a fimte variance 
(= 3), the variance for the Pareto risk W is mfimte 

By calculating the layer net premiums E(Ic,,~]) one can see that there is no SSD 
ordering between the the two-point  risk U and the Pareto risk W. 

However,  according to the popular mean-variance analysis, the Pareto risk ~s a 
higher risk since ~t has an infinite variance. Most Insurers would share the same 
view that the Pareto risk W is more risky than the two-point risk U 

In fact, a deeper  theoretical analysis (Kaas et al, 1994, p. 50-53) shows that every 
regular decis ion-maker  who has a ~mooth (to be precise, twice dlfferentmble) 
increasing concave utility function perceives that the Pareto risk is a higher risk 
than the two-point risk 
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6.2. Comparison of performance 

To compare  the pe r fo rmance  o f  var ious e lementa ry  t ransforms g iven  m the preced-  

ing secUon, we apply the p remium pnnc lp les  to the two-po in t  risk U and the Pareto 
risk W in Example  I We  choose  the parameter  values  such that H(U)  = 1.3 for all 

the p remium principles.  
F rom Table  I, one can see that on ly  the  P H - t r a n s f o r m  gives  the  P a r e t o  r i sk  W a 

p remium higher  than 1 3. (Recal l  that only the PH- t rans fo rm has g ' (0 )  = c~) 
For  the PH- t rans form principle,  we have  

7rp(U) = 4 f I { 
~ ,  p > _ 2  

For any p > 1, the r isk-adjusted p remium a lways  assigns a h igher  p r e m m m  to the 
Pareto risk (see Figure  4). 

Table 1. Prenuums for the two-point risk U and the Pareto risk W 

PRINCIPLE PARAMETER 

PH-transform p = 1 233 

Square-root r = 3.157 

Loganthn-uc r = I 055 

Exponennal ~ = 7594 

Quadratic r = 4 

Dual-power r = I 366 

Denneberg r = 3 

H (U) H (w) 

3 608 

3 2903 

3 2782 

3 2708 

3 2667 

3 2662 

3 2485 

E = 
E 8 

J ~  

for the PareIo risk [ / 

1 25 1.5 

The PH-transform parameter  - -  rho 

FIGURE 4 PH-transform always gives a htgher prenuum to the Paletn risk 
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6.3 A remark 

S H A U N  W A N G  

We have seen that all the e lementary transforms with g~(0) < cxz yield a lower 
premium to the Pareto risk, which confirms an earlier observation that, when g ' (0)  is 
finite, the relative loading does not increase fast enough at upper layers 

A necessary condit ion for H(U) < H(W) seems to be that g ' (0)  = c<~. However,  
g ' (0)  = ~ is not a sufficient condition for H (U) < H (W). For exemple,  consider the 
transform 

7'I" 095  
g(x)  = [Sln(sx)]  , 

where g is In fanuly (1) with g ' (0)  = oo. However,  H(U) = I 606 > H(W) = 1.588 

7 A N O N - A D D I T I V E  M E A S U R E  R E P R E S E N T A T I O N  

The class of prermum principle (1) has close connections w~th the recently devel-  
oped non-addl twe measure theory. Denneberg ' s  (1994) monograph serves as an 
execellent  reference on this subject. 

Let P be a probabihty measure on a o--algebra 2 ~ and g [0, 1] ~ [0, 1] be an 
increasing concave function with g(0) = 0 and g(1) = 1 The set function # = g o P 
defines a d i s to r t ion  of  the underlying probabdl ty  measure P and has been d~scussed 
m a number of  contexts (e.g., Denneberg, 1994, p.17) In fact, I~ ~s a sub-addluve 
measure and the prermum functional 

/ /0 /0 H ( X )  = X d #  = (g o P){ X > t}dt = g[Sv(t)]dt  

it  a Choquet mtergral of  X > 0. 

7.1. A representation theorem 

In the non-addmve measure theory the following representation theorem holds 
(Denneberg,  1994, p.144) 

Theo rem 4 Let B V  be an appropriate set of bounded landom variables. If functional 
H: B V  ~ [0, oo) ts (0 comonotomc addmve, (10 preserving FSD, and (m) H(I)  = l, 
then there exists a distortion function g such that 

fo H ( X )  = (g o P ) { X  > t}dt  = g[Sx(t)]dt  
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Furthenmore, H(X + Y) <_ H(X) + H( )') tf and only tf g concal,e 
As a pure mathematical result (in different forms), Theorem 4 was first proved by 

Schmeldler (1986) It is noted that for bounded variables, the sub-addmwty The- 
orem 2 becomes a corollary of Theorem 4, however, our Theorem 2 also holds for 
unbounded variables 

When translated back to our language of prenuum pnnc~ples, Theorem 4 says that 
transforming the decumulatlve dlsmbutmn ftmctlon is the only way to get como- 
notomc-addmve and SSD-preservmg prenllunl principles (as we have seen in the 
illustration m section 4. I). The class (1) gives a definmon and also a representation 
for all colnonotomc-addmve and SSD-preserving premium functionals 

7.2. Another look at actuarial literature 

This ~epresentatmon theorem rules out most traditional premmm principles Among a 
dozen prenuum principles discussed in Goovaerts et al (1984), none (except the net 
premmm) has representation (1). 

The Dutch principle does not have representation (1), since layer-addmvlty is 
violated. For an example, let 

1 
P r { Y = 0 }  = P r { Y =  1} = P , ' { Y = 2 } = 5  

Consider a specml case of the Dutch principle with o. = 1 and 0 = I. 

It(X) = E(X) + E(I(E(,~3,~ol). 

We have H(X) = 1½ but on the other hand 

( 2 2 1 )  (~  I ~ )  4 
H(I(o.q)+H(I(,z])= 5 + 5  × 5  + + s x  = I ~ >  H(X) 

Venter (1991) has shown that every premmm principle which satisfies layer- 
addmvity comes flora tin adjusted dlsmbution principle. He also gave some ex- 
anaples: 0) transforming the probablhty density function f(z) to af(ax) (which is a 
scale transforln); and (u) mulnplymg the density f(x) by a non-neganve funcnon 
h(x) (a special case of which is the covanance principle) However, not every layel- 
addmve principle pleserves the FSD Albrecht (1992) gave an example to show that 
a scale transform can lead to a price below the expected cost for the retained portion 
below a franchise deductible. 

From Theorem 4 ~t becomes evident that m order to have both layer-addttll,tty 
and the preserving of FSD, one has to transform directly the decunmlatlve dlstrlbu- 
non funcnon. This would rule out the scale-transform and the covanance prmcmple. 
It IS noted that any transform Y =  g(X) would lead to St(t) = Sx[g-I(t)] ,  which 
modifies the function Sx( ) from ms,de, thus not a d~rect transform of the decu- 
mulat~ve dlsmbutmn funcuon. 
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8 ECONOMICS OF INSURANCE 

8.1 Expected  utility theory:  an old t ime religion 

Utility theory was introduced to insurance economics by Borch (1961) and since 
then it has been playing a dominant role Given xmtlal wealth COo and an agent's 
uUhty funcUon u, the premium that the agent is willing to pay (or accept) for 
insuring risk X can be derived from the expected utility equation: 

u(w0 - P) = E[u(~0 - X)] 

Within this conceptual framework, a number of premluln principles have been 
developed by European actuaries (see Goovaerts et al, 1984); for instance, the 
exponential utdlty principle The widely-used variance principle P(X) + c~ Var(X) 
can be viewed as an approximation from the expected utility equation by using the 
first two terms of Taylor expansion 

Embedded m the expected utthty theory are some precise orderlngs of preference. 
The first stochastic dominance is the common ordering shared by all decision- 
makers with Increasing utility functions. The second stochastic dominance is the 
common ordering shared by all decxslon-makers with increasing concave utility 
functions It is this precise ordering of preference that makes expected utility theory 
a very popular conceptual framework 

Let the symbol >- and ,~ represent strict preference and indifference, respectively. 
As for Euchdean geometry, the utility theory is based on five axioms (e.g Fishburn, 
1982) 

EU.1 

EU.2 
EU 3 
EU 4 
EU 5 

If prospects V~ and V2 have the same cumulative distribution function, then V~ 
V 2 

Weak order L- xs reflecuve, transmve and connected. 
L- is continuous m the topology of weak convergence. 
preserves the FSD 
If Sv. L- Si,,, for and any p E [0, 1], the probablhstlc mixture satisfies: 

[(l - p )S i : ,  + pS,,2] ~_ [(l - p ) s l >  + p S v , ] ,  

From the above five axioms of preference, one can show the existence of a utility 
function u such that 'V, >- V2 ,f and only If E[u(V,)] ~ E[u( Z2)].' 

The axiomatic foundation makes many people believe that utlhty theory is the 
only legitimate theoretical tool for analyzing decxslon under uncertainty, which 
itself explains its dominant role in the economics of msulance. 

While economists are mainly concerned with the ordering of preference, actuaries 
are interested in concrete numbers m real terms (dollars, pounds, etc) Unfortu- 
nately, the expected utility paradigm does not promise a consistent premium 
principle (e.g. Reich, 1986) In fact, the layer-addltlV~ty only holds for linear utility 
functions. 
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8.2. Yaari's dual theory of choice under risk 

As with the Euchdean axiom system, a number of  people challenged the fifth axmm 
m the expected unhty theory (e g. Allals, 1953, Machma, 1982) Qmggln (1982) 
proposed an anticipated unllty theory which does not follow the expected utdlty 
axioms 

In an independent approach, Yaan (1987) proposed an alternanve to the fifth EU 
axIoIn. 

EU 5* If Vl, V2 and V3 are comonotomc and Vl _>- V2, for any p E [0,1], the 
outcome mixture sausfies: ( 1 - p) Vi + p//3 >'- ( I - p) I/2 + p V3. 

By replacing the fifth axtom EU.5 by EU.5*, Yaarl (1987) developed a dual 
theory of choice under r, sk, whmh turns out to be a specml case of  Qmggm (1982) 
Yaarl 's ax,omatm approach breaks the old behef that the expected utlhty paradigm 
is the only legitimate theorencal tool for analyzing decision under uncertainty. 

Under axmm EU 1-4 & EU.5*, Yaarl (1987) showed that there exists a dual 
utlhty funcnon h - [ 0 ,  1] + [0, I] such that a certain equtvalent to a random 
economic prospect V on interval [0,1] IS 

(5) 

where the funcnon h Is convex when an agent ,s risk-averse 
Now assume that an agent has inmal wealth I and is facing a random loss X on 

the interval [0,1] By facing risk X, the agent 's economic prospect is V = 1 - X. Let 
P be the ,nsurance premium for risk X Analogous to the expected utlhty equatmn, 
we have a certain-equivalent relatton: 

~0 I l - P = h [ S , _  x(t)]dt 

S,nce Si - x(t) = Pr{X < 1 - t}, we have 

/0' /0' 1 - P = h[l - Sx(I  - t)]dt = h[l - Sx(z)]dz, 

/o' e = g [ S x ( z / l ( <  w h e r e  g ( x )  = I - h ( l  - x)  

One can verify that g is concave if and only if h is convex. 
As a special case of  Yaarl 's equation (5), if h ( x ) =  1 - ( 1 -  x) ' ,  we get 

g(x) = xZ which corresponds to the PH-transform m Wang (1995) It is noted that 
Yaarl 's axmmatlzatlon is vahd for uniformly bounded random variables, whereas 
the PH-transform premium functional is defined also for unbounded random van- 
ables. (A referee pointed out that the contlnmty axiom may have to be weakened or 
modified in order to mclude unbounded random variables) 
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8.3 E c o n o m i c  i n t e r p r e t a t i o n s  

Firstly we need to &stlnguxsh between two types of risk-aversion 

• R~sk-averslon-I' the tladltlonal utility theory expresses as an attitude towards 
wealth, m the mean whde it is hnear with respect to probabdlty. 

• Risk-avelslon-2. The proposed premium principle (1) describes as an attitude 
towards probabdltles (uncertainty), in the mean while it ~s hncar with respect to 
wealth 

When interpreting the premluln principle (1), we wish to &stmgmsh in&vldual 
insurers and the whole Insurance industry 

• An insurer by itself can only take on hmlted liability If the loss is small scale 
relative to its financial capacity, the insnrer exhibits local risk-aversion-2 
However, at relatively large loss scales, an insurer may start to exhibit risk- 

aversion- 1. Even though thc threshold for this transition may not be clear-cut, it 
may be modeled by a utility function or by using a inaxmlum variance 
consttalnt. 

• The whole insurance industry, as a collective of mdlv~dual COlnpanles compet- 
Ing In the insulance market, cannot feel "pain' as a ~esuh of any single loss, so it 

cannot be risk-averse-1 On the other hand, the insurance industry is in a 
business to make a profit. We can say that 'profit-seeking' is a hidden nalne fol 
being 'risk-averse-2'.  

The • Indlwdual insurers are price-takers, not price-makers (Meyers, 1991) 
premmm principle (1) inay prowde a model for market pretnlums 

Regarding addmvlty, we have the following comments. 

• Traditional variance principle and exponential utlhty principle are additive for 
independent risks but super-additive for comonotonlc risks 

• By contrast, the premlutn principle (1) Is additive for COlnOnotonlc risks but 
strictly sub-additive for independent risks 

• The strict sub-addltwlty for independent (or less correlated) risks explains the 
mechamsm for r,sk exchange However, one has to adlmt that the insulance 
market is not as efficient as the financial market Significant transaction costs 
may discourage many theoretically justifiable risk-exchanges 

• As an operational rule, insurers may apply the prenamm plmclple (I) to 
individual risks rather than to the collective claim &strlbutxon. In which case, 
addltlVlty holds for indlwdual risks. 

• Theoretically, suppose that transaction costs are negligible, the optmaal strategy 
is to form cross-hedging for all dlverslflable risks (e.g. form a loss index of all 
companies combined) The remaining risks (and their layers or quota-shares) are 
all comonotonlc The premium principle (I)  is ad&tlve for comonotomc risks 
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8.4. Conclusion 

In this paper we have discussed a class of  premium principles defmed by 

H(X) = g[Sx(t)]dt, 

where g Is increasing concave with g(0) = 0 and g(l)  = I The premium principle 
H(X) is comonotonic-addinve and preserves the second stochastic dominance, its 
close connections with the recent developments in economic decision theory may 
make it more jusnfiable. In order to get unbounded relative loading at upper layers, 
as supported by the minimum rate-on-hne phenomenon in reinsurance ratemakmg, 
an addmonal requirement ~s that g ' ( 0 ) =  c~ After investigating a number of 
elementary transforms, the PH-transform seems to stand out as the most plausible 
method for actuaries. 
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